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Abstract
Reliable forecasts of the Earth system are crucial for human progress and safety from natural disasters.
Artificial intelligence offers substantial potential to improve prediction accuracy and computational
efficiency in this field, however this remains underexplored in many domains. Here we introduce Aurora, a
large-scale foundation model for the Earth system trained on over a million hours of diverse data. Aurora
outperforms operational forecasts for air quality, ocean waves, tropical cyclone tracks, and high-resolution
weather forecasting at orders of magnitude smaller computational expense than dedicated existing systems.
With the ability to fine-tune Aurora to diverse application domains at only modest computational cost,
Aurora represents significant progress in making actionable Earth system predictions accessible to anyone.

Keywords: Earth system modelling, atmospheric chemistry, wave forecasting, tropical cyclone forecasting,
weather forecasting, deep learning, foundation models

1 Introduction
Earth system forecasts are indispensable tools for human societies, as evidenced by recent natural events
such as the floods in Valencia, the air quality crisis in New Delhi, and hurricanes Helene and Milton in the
eastern United States. Such systems not only provide crucial early warnings for extreme events, but are
also invaluable for diverse fields ranging from agriculture to healthcare to global commerce. Modern Earth
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2 A Foundation Model for the Earth System
a

b

Fig. 1: Aurora is a 1.3 billion parameter foundation model for the Earth system. a: Aurora is pretrained on
multiple heterogeneous datasets with different resolutions, variables, and pressure levels. The model is then fine-tuned
for multiple operational forecasting scenarios at different resolutions: atmospheric chemistry and air quality at 0.4◦,
wave modelling at 0.25◦, hurricane tracking at 0.25◦, and weather forecasting at 0.1◦. b: Aurora is a flexible 3D Swin
Transformer with 3D Perceiver-based encoders and decoders. The model is able to ingest inputs with different spatial
resolutions, numbers of pressure levels, and variables.

system predictions rely on complex models developed over centuries of accumulated physical knowledge,
providing global forecasts of diverse variables for weather, air quality, ocean currents, sea ice, and hurricanes.

Despite their vital role, Earth system forecasting models face several limitations. They are computationally
demanding, often requiring purpose-built supercomputers and dedicated engineering teams for maintenance.
Their complexity, built up over years of development by large teams, complicates rapid improvements and
necessitates substantial time and expertise for effective management. Finally, forecasting models incorporate
numerous approximations, such as those for sub-grid scale processes, limiting accuracy. These challenges
open the door for alternative approaches that may offer enhanced performance.

Machine learning provides an attractive toolbox for addressing these issues. Breakthroughs in multiple fields
have shown that complex prediction systems can be streamlined with machine learning models that deliver
superior outcomes [Abramson et al., 2024, OpenAI, 2024]. This concept was introduced to the Earth sciences
as early as the 1990s, with pioneering work on neural networks [Rumelhart et al., 1986] applied to various
Earth forecasting problems [Marzban and Stumpf, 1996, McCann, 1992, Kuligowski and Barros, 1998a,b,
Spellman, 1999, Deo and Naidu, 1998, Tangang et al., 1997, Hsieh and Tang, 1998, Kolehmainen et al., 2000].
However, these early models could not scale to replace full dynamical systems. In 2023, a breakthrough came
with Pangu-Weather [Bi et al., 2023], where a neural network replaced a numerical solver, outperforming
state-of-the-art forecasting systems and sparking a wave of AI-based weather prediction models [Chen et al.,
2023, Lam et al., 2023, Han et al., 2024, Chen et al., 2023]. These advancements have mostly centred on
global medium-range weather forecasting at 0.25◦ resolution, leaving substantial gaps in other essential
areas, including ocean dynamics, wave modelling, and atmospheric chemistry. Furthermore, the potential
for machine learning to outperform complex extreme weather prediction systems, which currently rely on
human analysis of a wide range of models, remains underexplored.

In this paper we introduce Aurora, a foundation model for the Earth system, capable of tackling a variety of
forecasting tasks. Taking inspiration from recent successes of foundation models in other fields [Abramson
et al., 2024, OpenAI, 2024], we pretrain Aurora on over one million hours of Earth system data. We then
fine-tune the model on a range of downstream tasks, demonstrating for the first time that an AI model can
outperform multiple existing operational systems while also being orders of magnitude faster. Specifically,
Aurora achieves state-of-the-art performance in the following critical forecasting domains:

• 5-day global air pollution forecasts at 0.4° resolution, outperforming resource-intensive numerical
atmospheric chemistry simulations on 74% of targets,
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• 10-day global ocean wave forecasts at 0.25° resolution, exceeding costly numerical models on 86% of
targets,

• 5-day tropical cyclone track forecasts, outperforming seven operational forecasting centres on 100% of
targets, and

• 10-day global weather forecasts at 0.1° resolution, surpassing state-of-the-art NWP models on 92% of
targets while improving performance on extreme events.

2 Aurora: a flexible 3D foundation model for the Earth system
Aurora is a machine learning model that can ingest and make forecasts for any collection of Earth system
variables at any desired resolution. The model consists of three parts: (1) an encoder which converts
heterogeneous inputs into a universal latent three-dimensional (3D) representation; (2) a processor which
evolves the representation in time; and (3) a decoder which translates the standard 3D representation back
into the desired predictions. The processor is implemented as a 3D Swin Transformer [Liu et al., 2021,
Dosovitskiy et al., 2021] and the encoder and decoder as Perceiver-based modules [Jaegle et al., 2021, 2022]
(Figure 1). Forecasts for different lead times are generated by recursively feeding predictions back into the
model as inputs. For a detailed discussion of the model, see Supplementary B.

We train Aurora on a vast body of Earth system data to learn a general-purpose representation of the
dynamics that govern atmospheric and oceanic flow, and associated second-order processes. This first
training phase is called pretraining and includes a mixture of forecasts, analysis data, reanalysis data, and
climate simulations (see Supplementary C.2 for details). After the model has been pretrained, a second
training phase can leverage the learned general-purpose representations to efficiently adapt to new tasks,
new datasets, and new variables. This second training phase is called fine-tuning. Whereas pretraining is
expensive and requires vast amounts of data, fine-tuning is much cheaper and can typically be performed
with little data. We primarily pretrain on atmospheric data, because this is one of the largest sources of
information about the dynamical processes underlying the Earth system. Concretely, the pretraining objetive
is to minimise the next time-step (6-hour lead time) mean absolute error (MAE) for 150 k steps on 32 A100
GPUs, corresponding to approximately two and a half weeks of training.

Aurora is able to achieve unprecedented performance in fine-tuning tasks by simultaneously scaling the
volume of data used during pretraining along with its model size. To evidence this scaling, we demonstrate
that pretraining on more diverse data systematically improves validation performance as more datasets
are added, especially for extreme values (see Supplementary G for details). Moreover, we demonstrate
that validation performance improves by approximately 6% for every 10× increase in model size (also
Supplementary G). Finally, to measure the benefits of data and model scaling against existing numerical and
AI models, we fine-tune Aurora for medium-range weather forecasting at 0.25◦ resolution, a task for which
multiple state-of-the-art AI models are available for comparison. Aurora outperforms both IFS [ECMWF,
2023], the state-of-the-art numerical weather prediction (NWP) system, and GraphCast [Lam et al., 2023]
on over 91% of all targets (see Supplementary H for details).

3 Modelling atmospheric chemistry and air quality
Air quality, a crucial factor in human health, is determined by atmospheric concentrations of specific gases
and aerosols [WHO, 2021]. Accurately predicting global atmospheric composition can help mitigate the
impact of air pollution events. However, forecasting atmospheric composition is significantly more complex
and computationally costly than weather forecasting. It involves modelling complex chemical reactions
through hundreds of stiff equations and accounting for anthropogenic emissions that drive heterogeneous
pollution levels globally [Brasseur and Jacob, 2017]. The Copernicus Atmosphere Monitoring Service (CAMS)
takes this approach and produces global atmospheric composition forecasts and analysis products at 0.4◦

resolution and reanalysis products at 0.75◦ resolution [ECMWF, 2023]. To do this, CAMS extends the
ECMWF’s Integrated Forecasting System [IFS; ECMWF, 2023], the top operational medium-range weather
forecasting system in the world, with additional modules for aerosols, reactive gases, and greenhouse gases,
which increases computational costs by approximately a factor of ten. To date, no AI method has attempted
to produce operational predictions for global atmospheric composition at this scale.



4 A Foundation Model for the Earth System
Au

ro
ra

2022-09-01 12 UTC 2022-09-02 00 UTC
CA

M
S 

Fo
re

ca
st

s
CA

M
S 

An
al

ys
is

0 2 4 6 8 10
TC NO2 / mg m 2

a

1 2 3 4 5

50
100
150
200
250
300
400
500
600
700
850
925

1000

Pr
es

su
re

 / 
hP

a

CO

1 2 3 4 5

NO

1 2 3 4 5

NO2

1 2 3 4 5

SO2

1 2 3 4 5

O3

40% 20% 0% +20% +40%
RMSE relative to CAMS

1 2 3 4 5

TC CO

1 2 3 4 5

TC NO

1 2 3 4 5

TC NO2

1 2 3 4 5

TC SO2

1 2 3 4 5

TC O3

1 2 3 4 5

PM1

1 2 3 4 5

PM2.5

1 2 3 4 5

PM10

Lead time / days

b

SO
2 1

50
 h

Pa
NO

 5
00

 h
Pa

NO
 6

00
 h

Pa
SO

2 2
00

 h
Pa

NO
2 5

00
 h

Pa
NO

2 4
00

 h
Pa

NO
 4

00
 h

Pa
SO

2 2
50

 h
Pa

NO
2 3

00
 h

Pa
NO

 3
00

 h
Pa

SO
2 1

00
 h

Pa
NO

2 6
00

 h
Pa

NO
2 2

50
 h

Pa
CO

 5
0 

hP
a

NO
 1

50
 h

Pa
NO

 2
50

 h
Pa

SO
2 3

00
 h

Pa
TC

 N
O

CO
 6

00
 h

Pa
O 3

 6
00

 h
Pa

O 3
 7

00
 h

Pa
CO

 7
00

 h
Pa

TC
 N

O 2
O 3

 5
00

 h
Pa

NO
2 1

00
 h

Pa
O 3

 4
00

 h
Pa

NO
 1

00
 h

Pa
CO

 1
50

 h
Pa

NO
2 1

50
 h

Pa
SO

2 4
00

 h
Pa

NO
2 7

00
 h

Pa
O 3

 3
00

 h
Pa

O 3
 8

50
 h

Pa
NO

 7
00

 h
Pa

CO
 2

00
 h

Pa
NO

 2
00

 h
Pa

O 3
 2

50
 h

Pa
CO

 1
00

 h
Pa

TC
 S

O 2
SO

2 5
0 

hP
a

O 3
 9

25
 h

Pa PM
1

CO
 2

50
 h

Pa
SO

2 6
00

 h
Pa

CO
 5

00
 h

Pa
NO

2 9
25

 h
Pa

SO
2 7

00
 h

Pa
CO

 4
00

 h
Pa

CO
 3

00
 h

Pa
SO

2 5
00

 h
Pa

NO
2 2

00
 h

Pa
NO

2 8
50

 h
Pa

CO
 9

25
 h

Pa
CO

 1
00

0 
hP

a
CO

 8
50

 h
Pa

O 3
 1

00
0 

hP
a

O 3
 2

00
 h

Pa
SO

2 9
25

 h
Pa

NO
2 1

00
0 

hP
a

NO
 1

00
0 

hP
a

TC
 C

O
SO

2 8
50

 h
Pa

PM
2.

5
NO

 8
50

 h
Pa

NO
 5

0 
hP

a
NO

2 5
0 

hP
a

NO
 9

25
 h

Pa
PM

10
SO

2 1
00

0 
hP

a
O 3

 1
50

 h
Pa

O 3
 5

0 
hP

a
TC

 O
3

O 3
 1

00
 h

Pa

-30%-20%-10%0%10%20%

RM
SE

 re
la

tiv
e

 to
 C

AM
S

Aurora versus CAMS at three days lead time
CAMS
Aurora

c

Fig. 2: In an operational setting, Aurora matches or outperforms CAMS in most comparisons, at
orders of magnitude smaller computational expense. a: Predictions for tropical cyclones NO2 by Aurora
accurately predict CAMS analysis. Predicting atmospheric gases correctly is extremely challenging due to their
spatially heterogeneous nature. In particular, NO2, like most air pollution variables, is skewed towards high values in
areas with large anthropogenic emissions such as densely populated regions of East Asia. In addition, NO2 exhibits a
strong diurnal cycle; e.g., sunlight reduces background levels of NO2 through a process called photolysis. Aurora
accurately captures both the extremes and background levels. Aurora and CAMS forecasts are initialised with CAMS
analysis on 1 Sep 2022 at 00 UTC. b: Across all lead times, Aurora matches or outperforms CAMS on 74% of
all targets. c: At a lead time of three days, Aurora matches or outperforms CAMS on 89% of all variables. See
Supplementary I.1 for the full results.

Fine-tuning AI models on CAMS analysis data is extremely challenging for multiple reasons. First, the CAMS
system is relatively new and frequently updated, so training data are limited and change in distribution.
Second, air pollution concentrations are highly heterogeneous, sparse, and have large dynamic ranges
(Figure 2a). Finally, pollution is driven by complex anthropogenic factors. These sources underwent complex
changes during the global response to the COVID-19 pandemic, further complicating the available training
data.

Six air pollutants are the main drivers of poor air quality [WHO, 2021]: carbon monoxide (CO), nitrogen
oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), and particulate matter at 1 µm
(PM1), 2.5 µm (PM2.5), and 10 µm (PM10). Air quality warnings are usually based on threshold values for
PM2.5 and PM10. Aurora models the five chemical species (CO, NO, NO2, SO2, and O3) across atmospheric
levels and as total column (TC) values and models the particulate matter variables, with CAMS analysis
taken to be ground truth. We fine-tune Aurora on CAMS analysis data from Oct 2017 to May 2022 and test
on CAMS analysis data from May 2022 to Nov 2022 (Supplementary C.4). As the CAMS analysis dataset is
very limited in temporal extent, we also incorporate lower resolution and CAMS reanalysis data [EAC4;
Inness et al., 2019] from Jan 2003 to Dec 2021 in the fine-tuning process. We note that CAMS reanalysis
data is considered to be lower quality because it uses a lower resolution and a significantly older version of
the underlying model (Supplementary C).
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Aurora is competitive with CAMS (within 20% RMSE) on 95% of all targets, and matches or outperforms
CAMS on 74% of all targets (Figure 2b). At the three-day mark, Aurora is competitive with CAMS (within
20% RMSE) on all variables, and matches or outperforms CAMS on 89% of all variables (Figure 2c). CAMS
outperforms Aurora on ozone in the very upper atmosphere and the twelve-hour prediction of all species
in the lower part of the atmosphere. Aurora generates these prediction in approximately 1.1 s per hour
lead time on a single A100 GPU. This yields roughly a ×50,000 speed-up over CAMS [see Section 2.1.5 in
Buizza et al., 2018, for the cost of IFS], representing an important advancement in the field of atmospheric
composition forecasting. Fine-tuning the pretrained model produces large gains over training a model from
scratch, giving improvements for all targets with an average magnitude of 54% (see Figure I26).

We conduct a case study evaluating Aurora’s predictions for PM10 on 13 June 2022, when Iraq was hit
by a particularly severe sandstorm (Figure I23 in Supplementary I.1), one of a series that led to over
5,000 hospitalizations in the Middle East [Francis et al., 2023]. Sandstorms involve complex interactions
between particulate matter variables and atmospheric dynamics. Nevertheless, Aurora accurately predicts
the sandstorm one day in advance with similar accuracy to CAMS, at a fraction of the computational
cost. This case study shows that a foundation model approach for predicting air pollution can generalise to
extreme events involving complex interactions between atmospheric dynamics and pollutants.

4 Modeling ocean wave dynamics
Accurate ocean wave forecasts are critical for shipping, coastal defenses, aquaculture, off-shore energy
generation and disaster preparedness. The IFS High RESolution WAve Model (HRES-WAM) system
[ECMWF, 2024] produces state-of-the-art wave forecasts up to ten days lead time. IFS HRES-WAM extends
the IFS by adding a coupled ocean wave module. No AI model has yet attempted to produce operational
predictions for global wave forecasts at this scale.

Fine-tuning Aurora on ECMWF’s HRES-WAM analysis dataset is challenging. Ocean wave variables include
information about the direction, time periods, and spectral properties of waves, all of which is complex to
model. Wave components can also be absent, meaning that the new variables can be undefined at arbitrary
and variable spatial locations. Moreover, data for the variables that we consider in this experiment are only
available back to 2016, a short record for such a complex task.

The key variables in ocean wave modeling include significant wave height (SWH), mean wave period
(MWP), and mean wave direction (MWD). Each of these is predicted for wind waves (∗∗WW), total swell
(∗∗TS), primary swell (∗∗∗1) and secondary swell (∗∗∗2). We also include peak wave period (PP1D) and the
components of neutral wind [ECMWF, 2017] at 10 m, 10UN and 10VN (Supplementary C.5). For the full set
of variables see Table C2. We simultaneously fine-tune Aurora on both wave and meteorological variables
by lining up HRES-WAM analysis and HRES T0 in time. HRES T0 refers to the zero-hour forecasts of
high-resolution configuration of the IFS [Malardel et al., 2016], which provides an accurate ground truth for
a wide range of meteorological variables. Both HRES-WAM analysis and HRES T0 are regridded to 0.25◦

spatial resolution. Since the HRES-WAM variables are undefined over land and over oceans whenever sea
ice is present, we extend Aurora to support missing data [Gordon et al., 2020] (see Section 8.4 for details).
We use the years 2016–2021 inclusive for fine-tuning, and evaluate on 2022 (Supplementary C.4).

Aurora is competitive with HRES-WAM (within 20% RMSE) on 96% of all targets, and matches or
outperforms HRES-WAM on 86% of all wave variables (Figure 3b). At the three day mark, Aurora
is competitive with HRES-WAM (within 20% RMSE) on all but one variable, PP1D, and matches or
outperforms IFS HRES-WAM on 91% of all variables (Figure 3c). In particular, fine-tuned Aurora shows
good performance on prediction of neutral wind speeds, a critical variable for the coupling of atmospheric
and wave models [ECMWF, 2017].

We condut a case study of Aurora’s prediction of the significant wave height and mean wave direction during
Typhoon Nanmadol, which struck the southern coast of Japan on September 19, 2022 (Figure 3a). Aurora
generally produces strong global predictions for significant wave height and mean wave direction that follow
the prevailing global wind patterns, with large waves in the typhoon accurately captured.
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Fig. 3: In an operational setting, Aurora matches or outperforms HRES-WAM in the majority of
comparisons. a: Aurora accurately predicts significant wave height and mean wave direction for Typhoon Nanmadol,
the most intense tropical cyclone in 2022. The red box shows the location of the typhoon and the number is the
peak significant wave height. Aurora’s prediction and HRES-WAM Analysis are for 17 Sep 2022 at UTC 12, when
Typhoon Nanmadol reached peak intensity. Aurora was initialised at 16 Sep 2022 at UTC 12. b: Across all lead times,
Aurora matches or outperforms HRES-WAM on 86% of all wave variables. c: At a lead time of three days, Aurora
matches or outperforms HRES-WAM on 91% of all surface-level variables. See Supplementary I.2 for the full results.

5 Predicting tropical cyclone tracks
Tropical cyclones have caused more than 1.4 trillion USD in damage since 1950, and pose significant threats
to lives and property [World Meteorological Organization, 2024]. Official forecasts of tropical cyclone tracks
are vital for emergency services and the general public. These forecasts are produced by running multiple
different dynamical and statistical models ranging from global ensembles such as the IFS to purpose-built
tropical cyclone forecasting systems with vortex-following high-resolution grids such as the Hurricane
Weather Research and Forecasting model [NHC, 2019]. The output from these systems together with
multiple consensus products is analysed by a team of human forecasters who create the final operational
product. Here we demonstrate that a single, deterministic run of Aurora fine-tuned to HRES T0 at 0.25◦

(see Supplementary H for details) outperforms the track forecasts from these complex systems for multiple
agencies on a dataset of all tropical cyclones globally in 2022–2023.

Previous comparisons of AI-based tropical cyclone forecasts to official operational forecasts have focused on
forecasting track and intensity at short lead times of up to 24 h [Boussioux et al., 2022, Huang et al., 2022]
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Fig. 4: In an operational setting, Aurora outperforms state-of-the-art tropical cyclone prediction
systems for multiple agencies and regions worldwide. a: Aurora attains better track prediction MAE than
multiple agencies in various regions. Official forecasts are given by OFCL, PGTW, CWA, BABJ, RJTD, RKSL,
and BoM (bolded). For the North Atlantic and Eastern Pacific we additionally compare to various models utilised
in creating OFCL (not bolded). A model does not always make forecasts, which means that different columns
are computed over different data. Columns are therefore not indicative of model performance and only indicate
the performance w.r.t. Aurora. Here “≈” indicates that the 95% confidence interval for the cell contains zero (see
Supplementary I.3.4 for details). On average, Aurora is 20% better than other agencies in the North Atlantic and East
Pacific, 18% in the West Pacific, and 24% in the Australian region. b: On 21 July, a tropical depression intensified
into a tropical storm and was named Typhoon Doksuri. Doksuri would become the costliest Pacific typhoon to date,
inflicting more than 28 billion USD in damage. Aurora correctly predicts that Doksuri will make landfall in the
Northern Philippines, whereas PGTW predicts that it will pass over Taiwan.

and showed only marginal improvements at best. The analysis of other large-scale global machine learning
models [Lam et al., 2023, Pathak et al., 2022, Bi et al., 2023] has been limited to comparisons of tracks
produced by global models, with recent comparisons indicating that performance lags behind that of the
official operational forecasts [DeMaria, 2024].

To generate the track forecasts with Aurora, we run a simple heuristic tracker labelling the centre fix of the
vortex as the minimum mean sea level pressure in consecutive predictions (see Supplementary I.3.3). We
compare the Aurora track predictions to official forecasts for four basins worldwide, issued by the National
Hurricane Center (North Atlantic and Eastern Pacific), China Meteorological Administration, Central
Weather Administration Taiwan, Joint Typhoon Warning Centre and Japan Meteorological Agency (North
West Pacific) and Australian Bureau of Meteorology (Australian region). For all agencies and lead-times
Aurora outperforms the official track forecast (Figure 4a). For example, in the North Atlantic and Eastern
Pacific, we observe improvements of 6% at lead time one day and 20-25% at lead times two to five days.
This is the first time that a machine learning model has surpassed full operational tropical cyclone forecasts
up to five days.

Inspection of forecasts reveals that Aurora is able to produce accurate forecasts for multiple high-impact
events. For example, in the case of Typhoon Doksuri in 2023, Aurora accurately predicts landfall in the
Philippines at four days lead time, in contrast to the official predictions centring the vortex off the coast of
Northern Taiwan (Figure 4b). It is additionally important to consider the performance of Aurora relative to
the wider set of models available to the human forecasters to create the official forecast, as certain models
outperform the official prediction at various lead times [NHC, 2022, 2023]. We therefore compare Aurora to
the headline models in the NHC track verification report [NHC, 2022] for the North Atlantic and Eastern
Pacific. Aurora outperforms all headline models (Figure 4a), giving confidence that this is indeed a major
step forward in tropical cyclone track forecast skill.
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Fig. 5: In an operational setting, Aurora outperforms IFS HRES at 0.1° in the vast majority of
comparisons. Aurora is the only AI model to accurately estimate maximum 10 m wind speed in storm
Ciarán. a: Aurora outperforms IFS HRES on over 92% of targets. The scorecard is limited to pressure levels
lower in the atmosphere due to restricted availability of test year data. b: Wind speed RMSE computed against
measurements at weather stations. Aurora significantly outperforms IFS HRES. c: Operational predictions for Storm
Ciarán compared to IFS HRES analysis at 0.1◦. Black dots show the location of minimum MSL and therefore trace the
path of the storm. The maximum 10 m wind speed of the storm is shown in the bottom left corner of each prediction.
To better facilitate the prediction of extreme events, Aurora was run without LoRA. See Supplementary I.7. d:
Operational predictions for maximum 10 m wind speed during Storm Ciarán by Aurora, FourCastNet, GraphCast,
and Pangu-Weather. Aurora is able to predict the sudden increase in 10 m wind speed, unlike the other AI models.
The numbers for all AI models except Aurora have been extracted from Figure 3 by Charlton-Perez et al. [2024].

6 High-resolution operational weather forecasting
To accurately resolve high-impact weather events such as severe storms, it is essential that weather prediction
systems operate at a high spatial resolution to resolve processes occurring at smaller scales, such as convective
and boundary layer effects. HRES [Malardel et al., 2016], the high-resolution configuration of the IFS,
operates on a Gaussian grid (TCo1279), which is approximately 0.1◦ in mid-latitudes. In contrast, current
state-of-the-art AI weather prediction models [Chen et al., 2023, Lam et al., 2023, Pathak et al., 2022, Bi et al.,
2023, Bonev et al., 2023] can operate only at 0.25° resolution. The reason why state-of-the-art AI approaches
are focussed on 0.25◦ is the wealth of high-quality data available at this resolution, whereas 0.1◦ data only
goes back to 2016. Here we demonstrate that a pretraining–fine-tuning protocol can be used to efficiently
adapt Aurora to 0.1◦ and surpass the forecasting skill of IFS HRES under operational evaluation protocols.

We fine-tune Aurora to 0.1◦ IFS HRES analysis data, which span 2016–2022 (see Supplementary B and
Section 8.2 for details). For evaluation, we follow the operational protocol from Ben-Bouallegue et al. [2024],
initialising Aurora with IFS HRES analysis and evaluating forecasts against IFS HRES analysis. To ensure
that we do not disadvantage IFS HRES, we follow [Lam et al., 2023] and evaluate IFS HRES against its
own so-called zero-hour forecast, referred to as HRES T0, instead of IFS HRES analysis.
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Aurora achieves lower RMSE than IFS HRES on 92% of target variables, pressure levels and lead times
(Figure 5a). The performance gains are most pronounced at lead times of more than 12 hours into the future,
where we observe a reduction in RMSE up to 24%. At the shortest lead times IFS HRES outperforms Aurora
for many targets, as is the case for other AI models [Lam et al., 2023]. We additionally evaluate Aurora’s
forecasts on in-situ measurements of 10 m wind speed and 2 m temperature from the WeatherReal-ISD
dataset [Jin et al., 2024], which includes over 13,000 weather observing stations globally. We find that Aurora
outperforms IFS HRES for all lead times up to 10 days (see Figure 5b and Supplementary I.5). Due to the
limited availability of 0.1◦ data, we find that pretraining Aurora is essential in this application. On average,
the pretrained model is better than training from scratch by 25% (see Supplementary I.4).

We conduct a case study of Storm Ciarán, a high-impact mid-latitude storm which took place across North-
West Europe in late 2023, resulting in the lowest recorded pressure in November in England [UKMO].
Following Charlton-Perez et al. [2024], we initalise a selection of AIWP models at 31 Oct 00 UTC and
compare them to Aurora (see Figure 5d). We observe that among the AIWP models tested [Lam et al., 2023,
Pathak et al., 2022, Bi et al., 2023] Aurora is the only one capable of accurately predicting the abrupt rise
in maximum 10 m wind speed, closely matching IFS analysis, which is taken to be the ground truth.

7 Discussion
We have introduced Aurora, a large-scale foundation model for the Earth system that outperforms multiple
specialised operational prediction systems at a fraction of the computational cost. We demonstrate state-of-
the-art results for air quality, ocean waves, tropical cyclone tracks, and high-resolution weather forecasting.
From start to finish, every fine-tuning experiment took a small team of engineers and 4–8 weeks each
to conceptualise, prepare the data, train the model, and process the results, compared to a development
period of typically multiple years for dynamical baseline models. It should be noted, however, that such an
accelerated timeline is only possible because of the wealth of data that is available as a result of decades of
research into traditional numerical approaches.

Improvements are possible along multiple axes. To begin with, Aurora can easily be extended to generate an
ensemble of forecasts, which are crucial in situations where predictions are uncertain, such as for forecasts at
longer lead times or for localised phenomena like precipitation [Chen et al., 2023, Price et al., 2024, Lessig
et al., 2023, Li et al., 2024, Zhong et al., 2024]. Moreover, our scaling results suggest that we have not yet
hit a performance ceiling, and that better fine-tuning results can be obtained by scaling pretraining to
more diverse data and scaling Aurora to even larger sizes. Finally, whereas Aurora is fully operational in
all experiments, the model does still rely on initial conditions from traditional data assimilation systems.
Following recent advances in end-to-end weather forecasting [Vaughan et al., 2024], Aurora could be extended
to directly operate on observational data.

The potential implications of Aurora for the field of Earth system prediction are profound. Whilst in this
paper we showcase the application of Aurora to four domains, it could be fine-tuned for any desired Earth
system prediction task, potentially producing forecasts that outperform the current operational systems at a
fraction of the cost. For example prediction of ocean circulation, local and regional weather, seasonal weather,
vegetation growth and phenology, extreme weather modalities such as floods and wildfires, pollination
patterns, agricultural productivity, renewable energy production, and sea ice extent. With the ability to
fine-tune Aurora to diverse application domains at only modest computational cost, Aurora represents
significant progress in making actionable predictions accessible to anyone.
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8 Methods
Problem statement. We represent the observed state of the atmosphere and surface at a discrete time
t as a multi-dimensional array Xt ∈ RV ×H×W , where V is the total number of variables and H and W
are the number latitude and longitude coordinates, respectively. The state can be split into surface (St)
and atmospheric (At) components: Xt = (St, At) where St ∈ RVS×H×W and At ∈ RVAC×H×W with VS the
number of surface-level variables, VA the number of atmospheric variables, and C the number of pressure
levels. The goal is to predict a future state at time t′ > t. We learn a simulator Φ: (RV ×H×W )2 → RV ×H×W ,
Φ(Xt−1, Xt) = X̂t+1, which maps the observed states at the previous time Xt−1 and current time Xt to a
predicted state X̂t+1 at the next time step. For predictions at later time steps, we repeatedly apply the
simulator, producing an autoregressive roll-out:

Φ(Xt, X̂t+1) = X̂t+2,

Φ(X̂t+1, X̂t+2) = X̂t+3,

...
Φ(X̂t+k−2, X̂t+k−1) = X̂t+k.

For a detailed description of the notation and problem statement, including the specific multi-dimensional
array dimensions and variable definitions, please refer to Supplementary A.

8.1 The Aurora model
3D Perceiver encoder. To accommodate heterogeneous weather datasets with varying variables, pressure
levels, and resolutions, we design a flexible encoder that maps different datasets into a standardized 3D
representation for input into the model backbone; see Figure 6a.

The encoder treats all variables as H × W images. We incorporate static variables (orography, land-sea
mask, and soil-type mask) by treating them as extra surface-level variables. The images are split into P × P
patches and the patches are mapped to embedding vectors of dimension D using variable-specific linear
transformations. For the surface and every pressure level, the embeddings of different variables are summed
and tagged with an additive encoding of the pressure level or a learned vector for the surface. A Perceiver
module [Jaegle et al., 2021] then reduces variable numbers of physical pressure levels C to a fixed number
L = 3 of latent pressure levels. The result is a H

P × W
P × L collection of embeddings. This 3D representation

is tagged with additive encodings for the patch position, patch area, and absolute time. These encodings use
a Fourier expansion scheme with carefully chosen minimum and maximum wavelengths to capture relevant
information at appropriate scales. The patch area encoding enables Aurora to operate at different resolutions.

For a detailed description of the encoder architecture, including specifics on input processing, pressure level
aggregation, and additional encodings, please refer to Supplementaries B.1 and B.4.

Multi-scale 3D Swin Transformer U-Net backbone. The backbone of Aurora is a 3D Swin Transformer
U-Net [Liu et al., 2022, 2021], which serves as a neural simulator (Figure B1). This architecture allows for
efficient simulation of underlying physics at multiple scales. This architecture falls under the general family
of Vision Transformers. However, unlike classical ViTs, here we employ local self-attention operations within
windows and a symmetric upsampling-downsampling structure.

The backbone is characterized by the following key features: a symmetric upsampling–downsampling structure
with three stages each, enabling multi-scale processing; 3D Swin Transformer layers performing local self-
attention operations within windows, emulating local computations in numerical integration methods;
window shifting every other layer to propagate information between neighboring regions while accounting
for Earth’s spherical topology; res-post-norm layer normalization [Liu et al., 2022] for increased training
stability; and a flexible design allowing operation at multiple resolutions without fixed positional biases.

Our backbone contains 48 layers across three stages, compared to the 16 layers and two stages employed in
Bi et al. [2023]. This increased depth is made possible by our efficient encoding procedure, which uses a
small number of latent levels. For detailed information on the backbone architecture, including window sizes,
attention mechanisms, and comparisons with previous work, please refer to Supplementary B.2.
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Fig. 6: Aurora is an encoder–decoder model with a 3D latent representation. a: Aurora’s encoder module.
Input weather states are tokenized and compressed into a 3D latent representation using Perceiver-style cross-attention
blocks. The resulting latent tokens are augmented with appropriate encodings that provide spatial, temporal, and
scale information. b: Aurora’s decoder module. The target output variables are reconstructed in spatial patches by
decoding Aurora’s 3D latent state using Perceiver-style cross-attention blocks.

3D Perceiver decoder. The decoder reverses the operations of encoder, converting the output of the
backbone, again a 3D representation, back to the regular latitude–longitude grid (see Figure 6b). This
involves deaggregating the latent atmospheric pressure levels using a Perceiver layer [Jaegle et al., 2021] to
any desired collection of pressure levels and dynamically decoding into patches via variable-specific linear
layers. For a detailed description of the decoder architecture, please refer to Supplementary B.3.

8.2 Training methods
The overall training procedure is composed of three stages: (1) pretraining, (2) short–lead-time fine-tuning,
and (3) roll-out (long–lead-time) fine-tuning. We provide an overview for each of these stages in the following
paragraphs.

Training objective. Throughout pretraining and fine-tuning, we use the mean absolute error (MAE) as
our training objective L(X̂t, Xt). Decomposing the predicted state X̂t and ground-truth state Xt into
surface-level variables and atmospheric variables, X̂t = (Ŝt, Ât) and Xt = (St, At) (see Supplementary A),
the loss can be written as

L(X̂t, Xt) = γ

VS + VA

[
α

(
VS∑

k=1

wS
k

H × W

H∑
i=1

W∑
j=1

|Ŝt
k,i,j − St

k,i,j |
)

+ β

(
VA∑

k=1

1
C × H × W

C∑
c=1

wA
k,c

H∑
i=1

W∑
j=1

|Ât
k,c,i,j − At

k,c,i,j |
)]

, (1)
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where wS
k is the weight associated with surface-level variable k, wA

k,c is the weight associated with atmospheric
variable k at pressure level c, α is a weight for the surface-level component of the loss, β is a weight for the
atmospheric component of the loss, and γ is a dataset-specific weight. See Supplementary D.1 for additional
details.

Pretraining methods. All models are pretrained for 150 k steps on 32 A100 GPUs, with a batch size of
one per GPU. We use a (half) cosine decay with a linear warm-up from zero for 1 k steps. The base learning
rate is 5e−4, which the schedule reduces by a factor 10 at the end of training. The optimizer we use is
AdamW [Loshchilov and Hutter, 2019]. We set the weight decay of AdamW to 5e−6. The only other form of
regularisation we use is drop path (i.e., stochastic depth) [Larsson et al., 2017], with the drop probability
set to 0.2. To make the model fit in memory, we use activation checkpointing for the backbone layers and
we shard all the model gradients across the GPUs. The model is trained using bf16 mixed precision. See
Supplementary D.2 for additional details.

Short–lead-time fine-tuning. After pretraining Aurora, for each task that we wish to adapt Aurora to,
we start by fine-tuning the entire architecture through one or two roll-out steps (depending on the task and
its memory constraints), see Supplementary D.3 for additional details.

Roll-out fine-tuning. To train very large Aurora models on long-term dynamics efficiently, even at high
resolutions, we develop a novel roll-out fine-tuning approach. Our approach uses Low Rank Adaptation
(LoRA) [Hu et al., 2021] to fine-tune all linear layers in the backbone’s self-attention operations, allowing
adaptation of very large models in a data and parameter efficient manner. To save memory, we employ the
“pushforward trick” [Brandstetter et al., 2022], which propagates gradients only through the last roll-out
step. Finally, to enable training at very large numbers of roll-out steps without compromising memory or
training speed, we use an in-memory replay buffer, inspired by deep reinforcement learning [Lin, 1992, Mnih
et al., 2015] (see Figure D2). The replay buffer samples initial conditions, computes predictions for the
next time step, adds predictions back to the replay buffer, and periodically refreshes the buffer with new
initial conditions from the dataset. For detailed roll-out protocols for each fine-tuning task, please refer to
Supplementary D.4.

8.3 Datasets
Aurora was trained and evaluated using a diverse set of weather and climate datasets, encompassing five
main categories: analysis, reanalysis, forecast, reforecast, and climate simulation datasets. This variety of
data sources exposes Aurora to different aspects of atmospheric dynamics, reflecting variability in initial
conditions, model parametrizations, and chaotic dynamics. Key datasets used in our experiments include
ERA5 reanalysis, HRES operational forecasts, IFS ensemble forecasts, GFS operational forecasts, GEFS
ensemble reforecasts, CMIP6 climate simulations, MERRA-2 atmospheric reanalysis, as well as CAMS
forecasts, analysis, and reanalysis data. For a detailed inventory of all datasets used, including specific
pressure levels, resolutions, and additional context for each dataset, please refer to Supplementary C. These
datasets vary in resolution, variables included, and temporal coverage, providing a comprehensive basis for
training, fine-tuning and evaluating Aurora’s performance across different scenarios.

8.4 Task-specific adaptations
Ocean wave forecasting. In the IFS HRES-WAM analysis data, there is a spatially-varying absence of
data reflecting the distribution of sea-ice among other effects. To account for this dynamic nature of the
spatial distribution of defined variables, we give each variable an additional channel to represent the presence
of a measurement, so we add an additional set of density variables [Gordon et al., 2020] (Supplementary B.8).

8.5 Data infrastructure
Training Aurora presented significant technical challenges due to the large size of individual datapoints
(nearly 2 GB for 0.1◦ data) and the need to handle heterogeneous datasets with varying resolutions, variables,
and pressure levels. Due to the size of datapoints, training is typically bottlenecked by data loading and not
by the model. This means that training smaller models is not always cheaper, because training costs will be
dominated by data loading. We developed a sophisticated data storage and loading infrastructure to address
these technical challenges.
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Data storage and preprocessing. We use Azure blob storage with several optimisations to ensure
efficient data access. These optimisation include colocating data and compute to minimize latency and costs,
storing datasets in appropriate chunks to avoid unnecessary data download and to minimise the number of
concurrent connections, and compressing these chunks to reduce network bandwidth.

Data loading. We have developed an advanced multi-source data loading pipeline to efficiently handle
heterogeneous data. We now outline the main design principles of our pipeline. Datasets are instantiated
using YAML configuration files specifying loading parameters. Each dataset generates a stream of lightweight
BatchGenerator objects. The scope of the BatchGenerator class is to abstract away the details and partic-
ularities of datasets by offering a common interface for generating data batches. The streams are combined,
shuffled, and sharded across GPUs. After sharding, finally the common interface of BatchGenerator is used
to do the work needed to download and construct batches for training and inference.

This pipeline enables efficient training on multiple heterogeneous datasets by batching only samples from
the same dataset together and automatically balances workloads across GPUs by using different batch sizes
for different datasets. This design offers flexibility needed to experiment with the Aurora model architecture
while efficiently handling the challenges of large-scale, heterogeneous weather data processing. For a detailed
description of the data loading pipeline, including the BatchGenerator object structure and the unpacking
process, please refer to Supplementary E.

8.6 Verification metrics
We evaluate Aurora’s performance using two main metrics: the root mean square error (RMSE) and the
anomaly correlation coefficient (ACC). Both metrics incorporate latitude weighting to account for the non-
uniform grid of the Earth. The RMSE measures the magnitude of errors between predictions and ground
truth, while the ACC measures the correlation between the deviation of the prediction and ground truth
from the daily climatology.

To assess performance on extreme weather events, we use a thresholded RMSE. The thresholded RMSE
uses a threshold to determine which latitude-longitude gridpoints should be included in the calculation,
allowing for evaluation of model performance across different intensity levels of weather phenomena. The
thresholds are defined using the mean and standard deviation of the ERA5 reanalysis data over all training
years computed separately for each latitude-longitude point. We vary these thresholds linearly for both
positive and negative values to obtain RMSE curves for different intensity levels.

For a comprehensive explanation of the verification methods employed in this work, including their math-
ematical formulation and interpretation, please refer to Supplementary F. Taken together, these metrics
employed here provide a robust framework for evaluating Aurora’s performance across various weather
conditions, from typical to extreme events.

Data availability
All data used to train and evaluate Aurora can be obtained from publicly available sources. A detailed
description of these sources, including download links, is provided in Supplementary C.
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A Notation and problem statement
We denote the observed state of the atmosphere (including the surface) at a certain time t via a tensor Xt

with dimensions V × H × W , where V denotes the total number of variables, H specifies the number of
latitude coordinates (i.e., the height) and W denotes the number of longitude coordinates (i.e., the width).
Thus, we use the Xt

v,i,j indexing scheme to refer to the state of variable v at time t and latitude-longitude
coordinates given by (i, j). It is sometimes convenient to split this observed state Xt into its surface (St)
and atmospheric components (At). The surface state St is a VS × H × W tensor, where VS denotes the
number of surface variables. The atmospheric state is a VA × C × H × W tensor where VA denotes the
number of atmospheric variables and C represents the number of pressure levels throughout the atmosphere.
Thus, the total number of variables is given by V = VS + VA × C.

Given a system state at time t, our goal is to learn to predict the next state at a time t′ > t. For simplicity,
we operate with discrete time units of ∆t (which is sufficient for any practical purposes), and consider
t′ = t + k∆t for some positive integer k. To predict the state at the next time step, we learn a simulator
Φ: (Xt−∆t, Xt) 7→ X̂t+∆t, which maps the observed state of the world at the previous time and the current
time to a predicted state X̂t+∆t at future time t + ∆t. Since ∆t might vary from one task to another, we
will often simplify this notation to Φ: (Xt−1, Xt) 7→ X̂t+1.

To generate predictions for later time increments, the predictions of the learned simulator can be stacked
together in an autoregressive manner. Assuming X̂t = Xt, X̂t−1 = Xt−1, this can be described recursively as

X̂t+k = Φ(X̂t+k−2, X̂t+k−1). (A1)

We call this an autoregressive roll-out. It is obtained by applying the function Φ iteratively, a total of k
times. Finally, for a certain prediction X̂t′ , we denote the surface and atmospheric components of that
prediction by Ŝt′ and Ât′ , respectively.

B The Aurora model
In this section, we provide a more detailed description of each component of the Aurora model architecture.

B.1 3D Perceiver encoder
Compared to textual data, training large models on a diverse collection of weather datasets is a substantially
more challenging task due to the heterogeneous nature of the data. While language is generally homogeneous,
weather datasets include different variables, pressure levels and resolutions. Moreover, due to the costs of
storing the complete outputs of a simulation, many sources only make subsets of the total data available by
reducing the dataset size along one or more of the axes mentioned above. To accommodate such heterogeneous
datasets, we design a flexible encoder that maps datasets with varying structure into a standardised 3D
tensor that enters the model backbone.

Inputs. The encoder treats all the variables as H × W images on a regular latitude-longitude grid. For each
variable, we include the state at the current time t and the state at time t − 1. This results in a T × H × W
tensor, where T = 2 is the time dimension. For a dataset with C pressure levels and VA atmospheric variables,
the state of the atmosphere is represented as a VA × C × T × H × W . Similarly, for a dataset with VS surface
variables, the state of the surface level is represented as a VS ×T ×H ×W tensor. In practice, all computations
are batched, which adds an additional batch dimension in front of these tensors, which we omit for simplicity.

Static variables. Aurora includes three static variables, which stay constant over time: (1) geopotential
at the surface (Z), which provides information about local orography, (2) a land–sea mask (LSM), and (3)
soil-type (SLT). Internally in the model, the static variables are incorporated by appending them to the
collection of surface-level variables. The static variables are part of ERA5’s invariant surface-level variables.

Level embeddings. As in standard ViTs, we split each of the H × W images in P × P patches. The patches
at each level are then mapped into a vector in RD by a linear layer, i.e. C × VA × T × P × P 7→ C × D
and VS × T × P × P 7→ 1 × D. In order to accommodate datasets with different variables, this linear
transformation is constructed dynamically for each variable v using a set of weights Wv specific to that
variable. Each of the level embeddings is then tagged with an additive level encoding. For the atmospheric
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Fig. B1: Overview of the 3D Swin Transformer U-Net which is the backbone of Aurora. The U-Net is formed by
an encoder (left) and a decoder (right). Each of these is composed of three stages with (6, 10, 8) and (8, 10, 6)
Swin 3D Transformer layers, respectively. In total, the backbone has 48 layers. The highlighted tokens show a single
3D self-attention window of size (2, 4, 2) along the depth, width and height dimensions, respectively. The patch
merging layers halve the spatial resolution of the 3D tensor, while the patch splitting layers double it. This allows the
backbone to simulate the underlying physics at multiple scales. Although not shown in the figure, the embedding
dimension of each token is doubled after each patch merging layer and halved after each patch splitting layer.

levels, the level encoding is computed via a sine/cosine encoding of the atmospheric pressure associated
with each level (e.g., 150 hPa). For the surface level, we use a fully-learned vector of dimension D.

Level aggregation. The next step is to reduce the number of physical pressure levels in the atmosphere,
which can vary across datasets, to a fixed set of latent pressure levels. [Nguyen et al., 2023] introduced
a simple aggregation mechanism using attention pooling. Here, we adopt a more expressive scheme that
leverages Perceiver modules [Jaegle et al., 2021] consisting of one cross-attention layer followed by a residual
MLP. The inputs to the Perceiver are CL = 3 latent query vectors, along with C keys and values vectors
computed from the level embeddings via a linear transform. The output of the Perceiver is a CL × D tensor,
encoding the latent state of the atmosphere. Concurrently, the surface level embedding is simply passed
through a residual MLP. This latent state of the surface is then concatenated with the latent state of the
atmosphere across the vertical dimension, which yields a (CL + 1) × D latent representation of the weather
state at the location of each patch.

Scale, position and absolute time embeddings. By gathering the latent representations at each patch,
one obtains a 3D tensor CL × H/P × W/P , which can be seen as a latent grid on which the backbone
will perform the simulation. Therefore, we equip these tokens with information about their latitude and
longitude coordinates as well as their physical size (i.e., km2 per patch – which differs depending on the
latitude). Finally, we include absolute time information for each of the patches. For more information on
how these encodings are computed, see Supplementary B.4.

B.2 Multi-scale 3D Swin Transformer U-Net backbone
If the 3D tensor that the backbone receives as input can be viewed as a latent 3D mesh on which the
simulation is performed, then the backbone can be viewed as a (neural) simulator. Transformers, due to their
proven scaling properties [Kaplan et al., 2020] and connections with numerical integration [Brandstetter
et al., 2022], are a natural architectural choice for this simulation engine. To this end, we opt for a 3D
Swin Transformer U-Net [Liu et al., 2022, 2021] architecture (Figure B1), which has also been successfully
employed by [Bi et al., 2023].

The backbone itself is also composed of an encoder and a decoder, each made out of three stages. After
each stage of the encoder, the spatial resolution of the 3D tensor is halved. After each decoder stage, the
resolution is doubled and the output is combined with the corresponding outputs of the encoder. This
structure enables the backbone to simulate the underlying physics at multiple scales.
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Each layer of the backbone is a 3D Swin Transformer layer performing local self-attention operations between
tokens in the same regions (called windows), which can be seen as a form of message passing [Gilmer et al.,
2017]. One such window (of size (2, 4, 2)) is highlighted in Figure B1. In every other layer, all the windows
shift across all dimensions by half of the window size along that dimension. In this case, the window would
shift by (1, 2, 1) along the three axes, which allows the model to propagate information between neighbouring
regions. Due to the spherical topology of the Earth, when the window is shifted, we allow the left and
right side of the images to communicate directly as in Bi et al. [2023]. Overall, this procedure emulates the
local computations performed by numerical integration methods, while avoiding the quadratic complexity
of vanilla Transformers, which is impractical for the resolutions Aurora operates at. In practice, we use a
window size of (2, 12, 6) for all of our experiments, similarly to Bi et al. [2023].

To increase stability throughout training, we use the res-post-norm layer normalisation introduced in Liu
et al. [2022], but opt for a standard dot-product attention operation instead of the cosine attention procedure
from Swin v2 [Liu et al., 2022]. To obtain a simple and flexible backbone that can operate at multiple
resolutions, we do not use any form of positional bias in the attention operations as previously done by Liu
et al. [2022, 2021], Bi et al. [2023], which requires inputs with a fixed spatial resolution. Instead, we opt for
positional and scale encodings in the encoder, as described in the previous section, which does not impose
any constraints on the inputs.

Finally, we note that the encoding procedure we employ allows us to flexibly use a small number of latent
levels, which in turn frees up memory for massively scaling the number of parameters in the backbone.
Compared to the backbone in Bi et al. [2023], which has 16 layers and two stages, our backbone has an
additional stage and contains 48 layers.

B.3 3D Perceiver decoder
The decoder maps the standardised outputs of the latent simulation back into images on the regular lat-lon
grid. Its structure mirrors that of the encoder. The three latent atmospheric pressure levels are de-aggregated
into C, D-dimensional embeddings (i.e., one per output atmospheric level). As in the encoder, this is done
via a Perceiver layer [Jaegle et al., 2021], which uses the sine/cosine embeddings of the output levels’ pressure
as queries. These vectors are then decoded into P × P patches via a linear layer. The latent surface level
is decoded directly. Analogously to the patch embedding layer in the encoder, the linear layer creating
the output patches is constructed dynamically by selecting the weights associated with each variable. This
overall architecture allows the decoder to output predictions at arbitrary pressure levels, for an arbitrary set
of variables.

B.4 Position, scale, level, and time encodings
Given the minimum and maximum wavelengths λmin and λmax we want to capture, we use a Fourier encoding
of the following form to encode a value x into a D-dimensional vector,

Emb(x) =
[
cos 2πx

λi
, sin 2πx

λi

]
for 0 ≤ i < D/2, (B2)

where the fi are log-spaced values between the minimum and maximum wavelength, i.e.,

λi = exp
(

log λmin + i · log λmax − log λmin

D/2 − 1

)
. (B3)

In the following, we describe how the value x is computed for all the encodings and how λmin and λmax are
chosen.

Positional encoding. A two-dimensional positional encoding is used to account for the spatial position
of each token that enters the Transformer backbone. For an input token of dimension D, the first D/2
dimensions are used for latitude information while the next D/2 dimensions for longitude information. In
contrast to standard positional encodings used in ViT [Nguyen et al., 2023, Dosovitskiy et al., 2021], where
the coordinate IDs of the patch are used, we use a geometry-aware positional encoding given by the average
latitude and longitude of each patch. We set λmin = 0.01 and λmax = 720.
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Scale encoding. A separate, non-trainable, two-dimensional positional encoding is added to account for
the physical scale of each patch token. Specifically, give a patch with minimum and maximum latitudes
ϕ1, ϕ2, and minimum and maximum longitudes θ1, θ2 (measured in radians), we compute the area of the
patch using the formula

A = R2(sin ϕ2 − sin ϕ1)(θ2 − θ1), (B4)

where R = 6371 km is the radius of the Earth. Therefore, patches that originate from a high-resolution input
dataset (e.g., IFS HRES data) will yield small areas, while patches that originate from coarser datasets
(e.g., CAMS) will be assigned encodings with larger magnitude. We set λmin to a sufficiently small value
and λmax to the surface area of the entire Earth.

Pressure level encoding. Here, we simply encode the value of the atmospheric pressure associated with
each level (e.g., 500 hPa). We set λmin = 0.01 and λmax = 10, 000.

Absolute time encoding. We encode the absolute time associated with a certain input as the number of
hours since January 1, 1970. We set λmin to one hour and λmax to the number of hours in a year. Therefore,
this encoding is able to capture important information such as time of day, time of the week, month of the
year, etc.

B.5 Data normalisation
Aurora normalises all variables before processing them in the encoder and unnormalises the output of the
decoder to produce the final predictions. Every surface-level variable and every pressure level of every
atmospheric variable is normalised separately by a spatially constant scale and centre:

Xt
v,i,j,normalised =

Xt
v,i,j − centrev

scalev
. (B5)

We collectively call the scales and centres the normalisation statistics. The centres are estimated by the
empirical means computed over the whole ERA5 training data, and the scales are estimated by the empirical
standard deviations computed over the whole ERA5 training data. These normalisation statistics are then
used for all datasets. Final predictions are produced by unnormalising the output of the decoder:

X̂t
v,i,j = scalev · X̂t

v,i,j,normalised + centrev, (B6)

where X̂t
v,i,j,normalised = Φ(Xt−1

v,i,j,normalised, Xt−2
v,i,j,normalised) represents the raw, unnormalised output of the

decoder.

B.6 Extensions for 0.1° weather forecasting
Due to the increase in resolution, it becomes extremely challenging to make a large vision model like Aurora
fit in the available GPU memory, which is why we perform a few minor modifications to the architecture at
fine-tuning time.

Increase patch size. We increase patch size by a factor of 2.5×, from 4 (used in pretraining) to 10. Since
this corresponds to the increase in resolution from 0.25° to 0.1°, the spatial resolution of the backbone input
remains the same as in pretraining. Therefore, there is no memory increase in the backbone computations,
where most of the parameters reside. To ensure maximum transfer of skills from pretraining to fine-tuning,
we use a bilinear interpolation to interpolate from the smaller patch size to the larger patch size, then we
scale the magnitude of the interpolated weights by the ratio of the two patch sizes in order to preserve the
magnitude of the inputs [Beyer et al., 2023]. This ensures that the pretrained model can make reasonable
predictions at 0.1° even before it is fine-tuned. We find that this also makes fine-tuning significantly faster.

Remove backbone layers. We remove two layers from the two middle stages of the backbone encoder and
decoder, respectively. Thus, the number of layers for all stages becomes (6, 8, 8) for the backbone encoder
and (8, 8, 6) for the backbone deocoder. Since the model is pretrained using stochastic depth, the model is
robust to this change and we do not notice any significant drop in the initial loss before fine-tuning.



7 Bodnar et al.

B.7 Extensions for air pollution forecasting
In Section 3, we fine-tune Aurora to predict concentrations of air pollutants in addition to a standard
collection of meteorological variables. CAMS uses spatially and temporally disaggregated emissions data
as inputs. These inputs allow natural factors (i.e., wildfires, vegetation, etc.) and anthropogenic factors
(i.e., vehicle combustion, energy production, etc.) to influence the levels of the air pollutants simulated by
CAMS. Aurora does not use any emissions data as input, except for some additional static variables which
are fixed across all times and experiments. Instead, Aurora must implicitly learn to account for these effects,
but likely would improve if direct access to CAMS emissions factors, or other similar emissions data, were
available. We therefore slightly adapt Aurora to better predict these variables. All adaptations are carefully
described in this section.

12-hour model. Some pollutants, such as NO, show clear diurnal cycles (Figure 2a). We therefore fine-tune
a version of Aurora that was pretrained with time step equal to 12 hours instead of 6 hours. A 12-hour
model which takes in two previous time steps can use the state at time t − 24 h to make predictions for time
t. The 12-hour model was pretrained exactly like the 6-hour model, but only for 80.5 k steps, corresponding
to roughly a week and a half of training.

Differencing. Since some pollutants show clear diurnal cycles, we build the ability to predict the difference
with respect to a previous state explicitly into the model. Only for the new pollution variables, Aurora
explicitly predicts the difference with respect to either time t − 12 h or time t − 24 h. Variables NO, TC NO,
NO2, TC NO2, SO2, TC SO2, PM1, PM2.5, and PM10 show clear diurnal cycles, so for these variables we
predict the difference with respect to time t − 24 h. For variables CO, TC CO, O3, and TC O3 the behaviour
is less clear, so for these variables we predict the difference with respect to time t − 12 h.

We do not restrict Aurora to necessarily predict the difference. In the decoder, we introduce a modulation
factor, initialised to one, produced by an additional head:

X̂t =
[
Φmod(Xt−1, Xt−2) + 1

]
modulation factor

Xa + Φpred(Xt−1, Xt−2)
delta or direct prediction

, (B7)

where a is either t − 1 or t − 2, depending on the variable. Φmod and Φpred are two different heads of the
decoder, both initialised to zero. Therefore, at initialisation, Aurora predicts the appropriate persistence
prediction only for the new pollution variables.

Normalisation for concentrations of air pollutants. Fine-tuning on CAMS analysis happens in two
stages: an initial fine-tuning stage on CAMS reanalysis data, and the main fine-tuning on CAMS analysis data
(see Table C5 and Supplementary D.3). For the initial fine-tuning stage on CAMS reanalysis, normalisation
statistics for the new variables are computed over the whole CAMS reanalysis fine-tuning data; and for the
main fine-tuning on CAMS analysis, normalisation statistics for the new variables are computed over the
whole CAMS analyis training data. Due to the heterogeneous and skewed nature of air pollution variables,
the empirical standard deviation is not a good estimate of the scale. Instead, for all air pollution variables v,
we set centrev = 0, and estimate scalev by half the spatial maximum averaged over time,

scalev = 1
2 · 1

T

T∑
t=1

max {Xt
v,i,j : i = 1, . . . , H j = 1, . . . , W}. (B8)

By construction of this normalisation, the normalised air pollution variables will typically be in the range
[0, 2].

Transformation of concentration variables. Variables which are concentration values have a large
dynamic range by exhibiting important structure on varying orders of magnitude. Including these variables
without any modification makes the network sensitive to high-magnitude values (i.e., spikes) and insensitive
to low-magnitude values. One solution is to use the logarithm of these variables. However, including the
logarithm of positive variables makes the network overly sensitive to extremely-low-magnitude values (i.e.,
zero becomes negative infinity). We therefore include a linear combination of the original variable x and
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log(x) which clips away the weaknesses of x and log(x):

xtransformed = c1 min(x, 2.5) + c2
log(max(x, 10−4)) − log(10−4)

log(10−4) , (B9)

where c1 and c2 are initialised to 1
2 . The particular constants in the above transformation assume that V

is normalised to usually be in the range [0, 2]. For 10−4 ≤ x ≤ 2.5, which is the most interesting range,
xtransformed depends both on x, which is sensitive to normal-magnitude values, and on log(x), which is
sensitive to low-magnitude values. For x ≥ 2.5, min(x, 2.5) clips x to 2.5, so xtransformed then only depends on
x through log(x). For x ≤ 10−4, the c2-term is zero exactly, so xtransformed then only depends on x through x.

Additional static variables. To help Aurora better understand diurnal cycles and human behaviour, we
extend the static variables to include the time of day (normalised to [0, 1)), the day of week (normalised to
[0, 1)), and the day of the year (divided by 365.25). These normalised values x are included as two constant
masks cos(2πx) and sin(2πx). We also include more pollution-related static variables: the monthly average
anthropogenic emissions in the year 2019 summed across all industries for (1) ammonia, (2) CO, (3) the
sum of NO and NO2, and (4) SO2. These monthly averages x are included in two forms: as

x

max(x) , and
[

log
(

max
( x

max(x) , 10−10
))

− log(10−10)
]
/10. (B10)

The monthly averages can be downloaded from CAMS global emission inventories at https://
ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories and are regridded to the
resolution of CAMS analysis data. In total, there are 3 · 2 + 4 · 2 = 14 additional static variables.

Finally, whereas Aurora originally only includes the static variables as additional surface-level variables, we
now also include them as additional atmospheric variables by replicating them for every pressure level.

Variable-specific clipping. SO2 at 850 hPa and nearer to the surface tends to be particularly spikey. To
help stabilise roll-outs, during and after LoRA roll-out fine-tuning, we clip the predictions only for SO2 at
850 hPa and above at 1. This clipping happens before unnormalisation.

Patch size decrease. The lower resolution of CAMS analysis data (0.4° instead of 0.25°) allows us to use a
smaller patch size of 3 instead of patch size 4. To ensure maximum transfer, we initialise the size 3 patches
following the procedure described in Supplementary B.6.

Pressure-level-specific patch embeddings. Near the surface, air pollution variables are strongly affected
by human behaviour. However, near the top of the atmosphere, air pollution variables evolve according
to complicated atmospheric chemistry dynamics. To deal with the increased variety of behaviours across
pressure levels for the atmospheric variables, we make the patch embeddings in the 3D Perceiver encoder
and the patch reconstructions in the 3D Perceiver decoder dependent on the pressure level. The pressure-
level-dependent patches are initialised with existing pressure-level-independent patches wherever possible
and otherwise with uniform random values on the encoder side and with zeros on the decoder side.

Additional 3D Perceiver decoder. To help Aurora with the difference in behaviour between meteorological
and air pollution variables, we use a separate 3D Perceiver decoder for the air pollution variables. This
separate 3D Perceiver decoder is initialised to the one learned during pretraining.

32-bit floating point computation. To better handle low-magnitude values, all computations before and
after the backbone are performed in float32. The backbone operates in bf16 mixed precision mode.

B.8 Extensions for wave forecasting
In Section 3, we fine-tune Aurora to forecast ocean surface waves. All adaptations of Aurora for wave
forecasting are described in this section.

Initialisation for new wave variables. All new wave variables are modelled as surface-level variables.
The new patch embeddings are all initialised to zero, except for the patch embeddings of 10UN and 10VN,
which are initialised to the patch embeddings of 10U and 10V learned during pretraining.

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories
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Table B1: The four Aurora model configurations used for the model scaling experiments
in Supplementary G. For the 290 M model, the attention head dimensionality of the first
layer of the encoder and last layer of the decoder was 80 instead of 64.

Model size Backbone
encoder layers

Backbone
decoder layers Embed dim. Attention

head dim. Perceiver heads

117 M (2, 6, 2) (2, 6, 2) 256 64 8
290 M (4, 8, 4) (4, 8, 4) 320 64 8
660 M (6, 8, 8) (8, 8, 6) 384 64 12
1.3 B (6, 10, 8) (8, 10, 6) 512 64 16

Angle-valued variables. All angle-valued variables, which are MWD, MDWW, MDTS, MWD1, and
MWD2, are transformed with x 7→ (sin(x), cos(x)) prior to running the encoder. The model has separate patch
embeddings for the sine and cosine components of angle-valued variables. After running the decoder, sine
and cosine components are transformed back to angles using (sin, cos) 7→ atan2(sin, cos). The angle-valued
variables have normalisation mean zero and normalisation scale one.

Density channels for missing data. Wave variables are undefined above land. In addition, wave variables
can be missing above water, for example in the case that there is sea ice or a swell component is just absent.
The model therefore must be able to handle data missing in the inputs and predict missing values in the
outputs. We accomplish this by, for every wave variable, incorporating a so-called density channel [Gordon
et al., 2020].

For a variable, the density channel is one if data are present and zero if data are absent. In the variable,
missing values are then simply set to zero after normalisation. We need to include such a density channel, as
otherwise the model would not be able to distinguish between a zero in the variable and a missing value.
The model treats the variable and the associated density channel as separate surface-level variables with
separate patch embeddings. The model also predicts the density channels, which is how the model can
predict that a variable is absent at a specific location. To bound the density channels to the range [0, 1], we
use the sigmoid function.

When running the model autoregressively, it will take its own predictions for density channels as inputs. In
this case, to avoid any distribution mismatch, we set all density channels to one wherever it is greater than
1
2 , and we set all density channels and associated data channels to zero wherever the density channels are
less than 1

2 .

Additional static variables. We include two additional static variables: the bathemetry, and a mask which
is one wherever HRES-WAM models wave variables (between latitudes -78° and 90°) and zero elsewhere.
The additional static variables are normalised to the range [0, 1].

Additional layer normalisation. When fine-tuning Aurora to the wave data, to stabilise training, we
apply a layer normalisation to the keys of the first level aggregation attention block and another layer
normalisation to the queries of the first level aggregation attention block. These layer normalisations are
applied before the keys and queries are split across multiple heads.

B.9 Model hyperparameters and configurations
The 1.3B parameter Aurora model which we use in the main experiments instantiates the architecture as
follows. The embedding dimension in the encoder and first stage of the backbone is 512. This dimension
doubles at every subsequent stage of the backbone. The number of attention heads in the backbone is selected
such that the embedding dimension per head is 64 throughout the backbone. Due to the concatenation at
the end of the backbone, the embedding dimension in the decoder is 1024. In the Perceiver layers of the
encoder and decoder, we use an increased number of cross-attention heads (16), in order to give the model
fine-grained control over how the latent state of the atmosphere is constructed.

For the model scaling experiment in section Supplementary G, we instantiate smaller versions of this model
by reducing the number of backbone layers, the embedding dimension and the number of (cross) attention
heads, while always preserving the attention head dimension of 64 (Table B1).
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C Datasets
We use several different datasets throughout our experiments with Aurora. This section provides a detailed
inventory of all these datasets and the various details behind them.

C.1 Types of datasets
The datasets used in the paper can be classified into five categories: analysis, reanalysis, forecasts, reforecasts,
and climate simulation datasets. Observational data such weather station observations and satellite data only
measure the world in very select ways in particular regions, namely where the weather stations and satellites
are located. To produce a gridded estimate of the state of the world throughout the entire atmosphere,
numerical models are used to fill in the missing gaps. The different kind of datasets differ in precisely which
observational data they incorporate and how they use a numerical model.

Reanalysis data is regarded as the best estimate of the state of the weather at a particular point in time. It
uses a fixed numerical model to assimilate observations over a longer time window, including information
from both the past as well as the future, to make an estimate about the present. As a result, reanalysis is
not available in real time since it incorporates information the future, and it therefore cannot be used to
initialise operational NWP forecasts.

To initialise operational NWP forecasts, one instead maintains analysis data. Analysis data is produced in
a recursive manner: just before NWP forecasts are scheduled to be run, the analysis assimilation system
combines the most recent observational data with previous NWP forecasts to produce an estimate of the
NWP initial condition. Compared to reanalysis data, analysis data is available in real time because it only
incorporates observational data from the past.

In addition, one can make after-the-fact reforecasts by using reanalysis data as the initial condition.
These initial conditions are reanalysis data, so they are not available when making forecasts operationally.
Nevertheless, the purpose of reforecasts is to indicate how NWP models would have performed if they had
access to the best possible global state at initialisation time.

Finally, climate simulations model the physics, chemistry, and biology of the atmosphere to generate potential
climate scenarios under different forcing factors (e.g. various emission levels).

C.2 Dataset inventory
We enumerate all the datasets used in the paper below. Unless otherwise specified, we use the 13 pressure
levels from WeatherBench2 [Rasp et al., 2024]: 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, and
1000 hPa.

• ERA5 [Hersbach et al., 2018a,b] is a global reanalysis dataset from ECMWF for weather. It is widely
regarded as the best estimate we have of the total state of the weather at 0.25°.

• HRES forecasts [ECMWF, 2024a] refers to the high-resolution version of the operational NWP
forecasting model run by ECMWF. It is considered to be the most accurate NWP forecasting model
and it runs at 0.1° resolution. We use it both at its native resolution and regridded to 0.25°.

• HRES T0 provides the initial conditions used to initialise the HRES forecasts and it is often
considered as the ground truth against which to evaluate the quality of the forecasts [Rasp et al., 2024].

• HRES analysis represents the official analysis product of ECWMF. It contains an additional
assimilation step on top of HRES T0. In this sense, it provides a slightly more accurate source of truth.

• IFS ENS [ECMWF, 2024b] is the ensemble version of IFS, with 50 members run at a slightly coarser
resolution of 18 km (prior to June 27 2023, after which the resolution increased to 9 km with model
cycle 48R1). The 50 ensemble members are generated with perturbed initial conditions and stochastic
model physics within the IFS model. We use the dataset from the WeatherBench2 repository [Rasp
et al., 2024], where there are only 3 pressure levels available: 500, 700, and 850 hPa.

• IFS ENS mean contains the mean predictions for each variable based on IFS ENS. It is provided by
WeatherBench2 [Rasp et al., 2024] and contains the same 3 pressure levels as IFS ENS.
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• GFS forecasts [NOAA, 2024a] provides operational forecasts with a base resolution of 18 km. Here
we use the data re-gridded to 0.25°. The zero time (initialisation) of these forecasts is the real-time
operational analysis, derived analogously to HRES-T0.

• GFS T0 [NOAA, 2024a] refers to the real-time operational analysis, obtained from the zero time
(initialisation) of the GFS forecasts.

• GEFS reforecasts [NOAA, 2024b] is based on 21 ensemble members to address underlying uncer-
tainties in the input data such limited coverage, instruments or observing systems biases, as well
as the limitations of the model itself. In practice, such large quantities of data are only archived
for a few preceding months. Therefore, we use the reforecast data, spanning 2000-2019, initialised
with reanalysis initial conditions at 00 UTC each day. In this setting, there are only five ensemble
members, all of which are included. GEFS has 6 pressure levels, we use the 3 that line up with those
from WeatherBench2: 850, 925, 1000 hPa.

• CMIP6 is a climate model inter-comparison project, combining various climate modelling experiments,
which include land, sea, atmosphere, and aerosol variables. We have two datasets from CMIP6:
CMCC-CM2-VHR4 [Scoccimarro et al., 2018] and ECMWF-IFS-HR [ECMWF, 2022], which each
have 7 pressure levels: 50, 250, 500, 600, 700, 850, 925 hP.

• MERRA-2 [GMAO, 2022] is an atmospheric reanalysis dataset from NASA’S Global modelling
and Assimilation Office, incorporating space-based observations of aerosols. We use pressure levels
corresponding to the 13 levels from WeatherBench2.

• HRES-WAM [ECMWF, 2024] refers to analysis and forecast data from ECMWF’s ocean wave
model called HRES-WAM. This model is coupled to HRES, operates at 0.1◦ resolution, and models
surface-level variables describing ocean waves. We regrid this data to 0.25◦ resolution.

• CAMS [ECMWF, 2024b] refers to analysis and forecast data from the Copernicus Atmospheric
Monitoring Service. The data has 0.4◦ resolution and includes meteorological variables as well as
variables describing the composition of the atmosphere, such as concentrations of air pollutants.
CAMS undergoes frequent model updates. We use the 13 pressure levels from WeatherBench2.

• CAMS reanalysis [Inness et al., 2019] refers to the fourth generation ECMWF global reanalysis
of atmospheric composition (EAC4) from the Copernicus Atmospheric Monitoring Service [Inness
et al., 2024]. The data has 0.75◦ resolution and, like CAMS, includes meteorological and variables
as well as variables describing the composition of the atmosphere. However, unlike CAMS, CAMS
reanalysis is produced with a single, albeit considerably older, IFS model cycle: CY42R1. CAMS
reanalysis is considered to be less accurate than recent CAMS data because the model cycle is so
much older and the resolution is coarser; a quantitive comparison of CAMS and CAMS reanalysis
against station observations can be found at https://aeroval.met.no/. We use the 13 pressure levels
from WeatherBench2.

Collectively, these data sources open different windows onto the underlying atmospheric dynamics, and expose
Aurora to different factors that reflect variability with respect to initial conditions, model parameterizations,
and chaotic dynamics. The range of variables used, along with their definitions, are detailed in Table C2.

In Table C3, Table C4, and Table C5, we detail the dataset details used for pretraining, fine-tuning, and
evaluating Aurora, respectively.

C.3 Motivation for CMIP6 dataset selection
We selected the CMCC-CM2-VHR4 and ECMWF-IFS-HR from CMIP6 for several reasons:

1. Resolution compatibility: CMCC-CM2-VHR4 provides data at 0.25°, matching ERA5, while
ECMWF-IFS-HR at 0.45° offers a complementary intermediate scale which is well matched for the
atmospheric chemistry setting. As detailed in Table C4, this resolution diversity helps Aurora learn
scale-aware representations while maintaining sufficient fidelity for our target applications.

https://aeroval.met.no/
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Table C2: Naming of the variables used from the datasets, including units. Surface-level variables are available
as a single value per latitude–longitude point. Atmospheric variables are instead available at a range of levels of
constant air pressure throughout the atmosphere, therefore there are multiple values per latitude–longitude point.
Atmospheric pollutants are measured as concentrations throughout the layers of the atmosphere with units of kg m−3.
Atmospheric pollutants are also included as their total column (TC) value, which become 2D variables with units
kg m−2 and are here categorised as surface-level variables.

Variable Units Description

Surface-level meteorological variables
2T K Temperature at 2 m above surface of land or sea
U10 m s−1 Eastward component of wind at 10 m
V10 m s−1 Southward component of wind at 10 m
WS m s−1 Wind speed at 10 m; equal to (U102 + V102)1/2

MSL Pa Air pressure at mean sea level
Atmospheric meteorological variables
U m s−1 Eastward component of wind
V m s−1 Southward component of wind
T K Temperature
Q kg kg−1 Specific humidity
Z m2 s−2 Geopotential
Surface-level pollution variables
PM1 kg m−3 Concentration of particulate matter with at most diameter 1 µm
PM2.5 kg m−3 Concentration of particulate matter with at most diameter 2.5 µm
PM10 kg m−3 Concentration of particulate matter with at most diameter 10 µm
TC x kg m−2 Total column value of x

Atmospheric pollution variables
CO kg m−3 Concentration of carbon monoxide
NO kg m−3 Concentration of nitrogen monoxide
NO2 kg m−3 Concentration of nitrogen dioxide
SO2 kg m−3 Concentration of sulphur dioxide
O3 kg m−3 Concentration of ozone
Surface-level wave variables
10UN m s−1 Eastward component of natural wind at 10 m
10VN m s−1 Southward component of natural wind at 10 m
WSN m s−1 Natural wind speed at 10 m; equal to (10UN2 + 10VN2)1/2

PP1D s Peak wave period
SWH m Significant wave height of total wave (wind waves plus swell)
MWP s Mean wave period of total wave
MWD degrees Mean wave direction of total wave (w.r.t. north)
SHWW m Significant height of wind waves
MPWW s Mean period of wind waves
MDWW degrees Mean direction of wind waves (w.r.t. north)
SHTS m Significant height of total swell
MPTS s Mean period of total swell
MDTS degrees Mean direction of total swell (w.r.t. north)
SWH1 m Significant height of first swell partition
MWP1 s Mean wave period of first swell partition
MWD1 degrees Mean wave direction of first swell partition (w.r.t. north)
SWH2 m Significant height of second swell partition
MWP2 s Mean wave period of second swell partition
MWD2 degrees Mean wave direction of second swell partition (w.r.t. north)
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2. Variable coverage: Both datasets include our core set of meteorological variables (2T, U10, V10,
MSL, U, V, T, Q) across 7 pressure levels (50, 250, 500, 600, 700, 850, 925 hPa), providing good vertical
coverage of the atmosphere while maintaining consistency with our other data sources.

3. Temporal extent: These datasets span 1950-2014, offering exposure to long-term climate variability
that complements our weather datasets. As shown in Supplementary G, this temporal diversity
particularly benefits the prediction of extreme events, result in up to 35% error reduction in the tails of
the distribution.

C.4 Training, validation, and test splits
For validation while pretraining, we use one year of IFS HRES at 0.25° resolution: 2020. Our test years are
2022 and 2023, depending on the dataset. Details of dataset splits can be found in Table C3, Table C4, and
Table C5.

Motivation for CAMS analysis train–test split. CAMS undergoes frequent updates that dramatically
affect the data distribution. Particularly notable are the updates in Sep 2017, when an issue was fixed that
caused PM2.5 and PM10 to be zero; July 2019, when the vertical resolution was increased; May 2021, which
significantly alters the behaviour of the PMs; Dec 2022, which alters the background error covariances and
significantly alters the distribution of the data; and June 2023, when CAMS is updated to the latest cycle
C48R1 and is officially included as a chapter in the IFS documentation [ECMWF, 2023]. Note that there
were many more updates, but the mentioned ones were observed to be the most significant. Between these
updates, the period May 2021 to Nov 2022 inclusive appears to be the most stable period. From this period,
we use the last five months, Jun 2022 to Nov 2022 inclusive, for testing; and we include the first twelve
months, Jun 2021 to May 2022 inclusive, for the fine-tuning data. We additionally include in the fine-tuning
data all data going back to Oct 2017, after the issues with PM2.5 and PM10 were fixed.

C.5 Dataset-specific postprocessing
For some datasets, like HRES-WAM, more careful postprocessing of the data is required. We detail all
additional postprocessing steps here.

Postprocessing for HRES-WAM. In Section 4 we predict the neutral wind velocities. The neutral wind
is related in a complex manner to the true wind velocity and represents the wind speed under neutral
atmospheric conditions [ECMWF, 2017]. It is critical in coupling wave and atmospheric models, and
assimilation of measurements of wind speed over oceans, so we consider it an important variable for Aurora
to predict after fine-tuning on this data.

HRES-WAM does not actually contain 10UN and 10VN, but instead the magnitude and the direction of
the neutral wind speed, WIND and DWI respectively. We obtain 10UN and 10VN from WIND and DWI
according to the following transformation:

10UN = − sin(DWI) · WIND, 10VN = − cos(DWI) · WIND. (C11)

Note the minus sign, which is necessary because the direction is where the wind comes from, not where it
goes towards.

Absence of waves, e.g. above land or wherever there is sea ice, is represented with NaNs in the data. In
addition, we sometimes find that significant wave heights and/or mean wave periods can be zero. Since
zero significant wave height also means that there is no wave (or a particular wave component is absent),
whenever significant wave height is zero, we set it and the corresponding mean wave period and mean wave
direction to NaN. We do this separately for the total wave and every wave component, i.e. wind waves, total
swell, swell one, and swell two. We verify that no spurious zeros remain after this processing step.

D Training methods
The overall training procedure is composed of three stages: (1) pretraining, (2) short-lead-time fine-tuning,
(3) roll-out fine-tuning. We describe each of these stages in detail in the following subsections.
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D.1 Training objective
Throughout pretraining and fine-tuning, we use the mean absolute error (MAE) as our training objective
L(X̂t, Xt). Decomposing the predicted state X̂t and ground truth state Xt into surface-level variables and
atmospheric variables, X̂t = (Ŝt, Ât) and Xt = (St, At) (Supplementary A), the loss can be written as

L(X̂t, Xt) = γ

VS + VA

[
α

(
VS∑

k=1

wS
k

H × W

H∑
i=1

W∑
j=1

|Ŝt
k,i,j − St

k,i,j |
)

+ β

(
VA∑

k=1

1
C × H × W

C∑
c=1

wA
k,c

H∑
i=1

W∑
j=1

|Ât
k,c,i,j − At

k,c,i,j |
)]

, (D12)

where wS
k denotes the weight associated with surface-level variable k and wA

k,c denotes the weight associated
with atmospheric variable k at pressure level c. The overall surface loss is weighted by α = 1

4 , while the
overall atmospheric loss is weighted by β = 1. Finally, the entire loss for a particular example is weighted by
a dataset weight γ, which allows us to upweight the datasets with higher fidelity such as ERA5 and GFS-T0.
Specifically, we use γERA5 = 2.0, γGFS-T0 = 1.5, and set the rest of the dataset weights to 1. When training,
we minimise the expected value of this loss computed over a mini-batch of samples.

Variable weighting for pretraining. During pretraining, we set wS
MSL = 1.5, wS

U10 = 0.77, wS
V10 = 0.66,

and wS
2T = 3.0. For the atmospheric variables, for all pressure levels c, we set wA

Z,c = 2.8, wA
Q,c = 0.78,

wA
T,c = 1.7, wA

U,c = 0.87, and wA
V,c = 0.6. The weights are chosen to balance the losses of the individual

variables and have been inspired by the weights used by Bi et al. [2023].

Variable weighting for concentrations of air pollutants. Air pollutants are extremely sparse. To
balance these variables with the meteorological variables, we require a radically different approach. For the
air pollution variables, we specify the weights such that the per-variable normalised MAE is roughly one.

For all air pollution variables, we compute the MAE for the persistence prediction of 12 h or 24 h, depending on
whether the model predicts the difference with respect to the state 12 h ago or 24 h ago (Supplementary B.7).
These persistence errors are computed on CAMS reanalysis data. We then set

wS
v = scalev

persistence MAEv

, wA
v,c = scalev,c

persistence MAEv,c

. (D13)

Intuitively, multiplication by the scale first undoes the data normalisation and then dividing by the persistence
MAE brings the normalised MAE to have a value of approximately one.

Variable weighting for wave variables. When fine-tuning Aurora for wave forecasting, we tune the
weights to emphasise the more important and the more difficult variables. Specifically, we set sS

SWH = 2.0,
sS

MWP = 2.0, sS
MWD = 2.0, sS

PP1D = 4.0, sS
MPTS = 2.0, and sS

MDTS = 2.0.

Variable weighting for IFS T0 and analysis fine-tuning. During fine-tuning on IFS T0 0.25◦ and IFS
analysis 0.1◦, we slightly adjust the pretraining weights. For the surface-level variables, we set wS

MSL = 1.6,
wS

U10 = 0.77, wS
V10 = 0.66, and wS

2T = 3.5. For the atmospheric variables, for all pressure levels c, we set
wA

Z,c = 3.5, wA
Q,c = 0.8, wA

T,c = 1.7, wA
U,c = 0.87,and wA

V,c = 0.6.

Adjustments of the training loss for wave variables. For angle-valued variables, the MAE training
loss is computed over the sine and cosine components of the angle (see Supplementary B.8). The sine and
cosine components inherit the weighting of the original variables.

To deal with missing data, Aurora predicts the original variable along with a density channel (see Supplemen-
tary B.8). We compute the MAE over both the original variable and the density channel by also computing
the density channel for the target variable following exactly the procedure outlined Supplementary B.8. The
density channels inherit the weighting of the original variables. Note that the procedure sets all NaNs to
zero, meaning that the MAE can be computed without risking the loss to become NaN.
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D.2 Pretraining methods
All models are pretrained for 150 k steps on 32 A100 GPUs, with a batch size of one per GPU. Our model
sees about 4.8 million frames after 150k steps of pretraining, which takes approximately two and a half
weeks. This roughly corresponds to 3 epochs over the C4 pretraining configuration that is outlined in
Supplementary G. We use a (half) cosine decay with a linear warm-up from zero for 1 k steps. The base
learning rate is 5e−4, which the schedule reduces by a factor 10× at the end of training. The optimizer we use
is AdamW [Loshchilov and Hutter, 2019]. We set the weight decay of AdamW to 5e−6. The only other form
of regularisation we use is drop path (i.e., stochastic depth) [Larsson et al., 2017], with the drop probability
set to 0.2. In order to make the model fit in memory, we use activation checkpointing for the backbone
layers and we shard all the model gradients across GPUs. The model is trained using bf16 mixed precision.

Aurora pretraining in comparison. The training of Aurora is comparable to GraphCast (four weeks on
32 Cloud TPU v4 devices, [Lam et al., 2023]) and faster than Pangu-Weather (about seven weeks using 64
GPUs, [Bi et al., 2023]), and roughly comparable to AIFS (about one week with 64 GPUs in total [Lang
et al., 2024]). This demonstrates that Aurora achieves its improved performance and additional capabilities
while maintaining training costs in line with other state-of-the-art models.

12-hour air pollution model. The 12-hour model used in the air pollution experiments was trained in
exactly the same manner as described above, but for 80.5 k steps instead of 150 k steps.

D.3 Short lead-time fine-tuning
For each task we wish to adapt the pretrained Aurora model to, we start by fine-tuning the entire architecture
through one or two roll-out steps (depending on the task and its memory constraints). In all cases, we use a
task-dependent hyperparameter selection, which we describe below.

HRES 0.25° T0. We fine-tune the weights of the entire model for 8 k training steps across 8 GPUs, with a
batch size of 1 per GPU. At each iteration, we perform two roll-out steps and backpropagate through both
of these steps. The model is optimised to minimise the MAE loss averaged across both roll-out steps. For
this regime, we use a 1 k step learning rate warm-up, followed by a constant learning rate of 5e−5. We use
the same weight decay as in pretraining and disable drop path. To ensure the model fits in memory for two
roll-out steps, we also use activation checkpointing for the encoder and the decoder, along with gradient
sharding as in pretraining.

HRES 0.1° analysis. We fine-tune the weights of the entire model for 12.5k steps across 8 GPUs, with a
batch size of 1 per GPU. Due to the increased memory constraints at this higher resolution, we train the
model only through a single step prediction. We use a 1k step learning rate warm-up, followed by a constant
learning rate of 2e−4. We set the weight decay to zero and disable drop path. To accommodate the higher
memory requirements, we use activation checkpointing for all the layers of the model and use sharding for
both the weights and the gradients.

CAMS 0.4° analysis. We train with single-step prediction, 12 h in this case, and the batch size is fixed to
1 per GPU. We use a linear warmup of 100 steps from zero, but we do not use a learning rate schedule after
that. We also use no weight decay, disable drop path, use activation checkpointing for all the layers of the
model, and use sharding for the weights and gradients.

Fine-tuning on CAMS analysis data proceeds in two steps. In the first step, we fine-tune on CAMS reanalysis
data using 16 GPUs for 22 k steps at the high learning rate and then for 14.5 k steps at the low learning rate.
The high learning rate is 1e−3 for the encoder patch embeddings of only the new pollution variables and
1e−4 for the rest of the the network. The low learning rate is 1e−4 for the encoder patch embeddings of only
the new pollution variables and 1e−4 for the rest of the network. To ensure maximum transfer from the
CAMS reanalysis data to the CAMS analysis data, the CAMS reanalysis data is regridded to the resolution
of CAMS analysis data, 0.4◦. In the second step, we fine-tune on CAMS analysis data using 8 GPUs for
7.5 k steps at the high learning rate and finally for 5.5 k steps at the low learning rate. The final model is
fine-tuned for 49.5 k steps in total.

HRES-WAM 0.25° analysis. We fine-tune the weights of the entire model for 14 k steps across 8 GPUs,
with a batch size of 1 per GPU. For the learning rate, we use a linear warmup of 500 steps to 1e−3 for
the encoder and decoder parameters of the new wave variables and 3e−4 for the rest of the network. The
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Backprop and add prediction at time T with 
target at time T + 1 as new training sample  

DATASET

Sample training example and 
add to buffer every K steps

Fig. D2: Diagram of the roll-out fine-tuning procedure. The replay buffer is initially populated with samples from
the dataset. At each fine-tuning step, the model fetches a training sample from the replay buffer, performs a training
step, and then it adds this new prediction (together with its next step target from the dataset) to the replay buffer.
Every K steps, the replay buffer is refreshed with a new training sample from the dataset. Since the replay buffer is
generally much smaller than the dataset size, this ensures that enough samples from the dataset are seen. Overall,
this procedure allows the model to train fast on an evolving distribution of autoregressive roll-out steps coming from
a mixture of model versions. This avoids the need to run expensive roll-out procedures at each step.

learning rate is then annealed to 1e−5 according to a cosine schedule for 30 k steps (the run was stopped at
14 k steps). Afterwards, the training data was restricted to the range Jul 2018–2021: on 5 June 2018, IFS
cycle 45r1 was implemented, which significantly changed the distribution of the data by coupling of the
three-dimensional ocean and atmosphere. For this adjusted training data range, we further fine-tune the
weights of the entire model for 10 k steps across 8 GPUs, with a batch size of 1 per GPU. For the learning
rate, we again use a linear warmup of 500 steps to 5e−5 for all parameters. The learning rate is then annealed
to 1e−5 according to a cosine schedule for 10 k steps. The final model is fine-tuned for 24 k steps in total.

D.4 Roll-out fine-tuning
To ensure long-term multi-step dynamics, AI models typically fine-tune the model specifically for roll-outs.
Backpropagating through the autoregressive roll-outs for a large number of steps is unfeasible for a 1.3B
parameter model such as Aurora. This is particularly true at 0.1° resolution, where even a single step roll-out
requires close to the memory limit of an A100 GPU with 80GB of memory.

We use Low Rank Adaption (LoRA) [Hu et al., 2021] layers for roll-out fine-tuning all the linear layers
involved in the self-attention operations of the backbone. This allows us to take advantage of the large
model size and the fact that it can be easily adapted once pretrained. That is, for each linear transformation
W involved in the Swin self-attention layers, we learn low-rank matrices A, B to modulate the outputs of W
for an input x via Wx + BAx. For more details, see Hu et al. [2021].

Furthermore, to avoid any memory increases compared to single-step fine-tuning, we use the “pushforward
trick” introduced in Brandstetter et al. [2022], where gradients are propagated only through the last roll-out
step. We run this at scale by using an in-memory replay buffer to avoid delays with generating long roll-outs
on each training step, similarly to how it is used in deep reinforcement learning [Lin, 1992, Mnih et al.,
2015] (Figure D2). At each training step, the model samples an initial condition from the replay buffer,
computes a prediction for the next time step, then adds this new prediction back to the replay buffer. We
periodically fetch fresh initial conditions from the dataset and add them to the replay buffer (i.e., the dataset
sampling period). This procedure allows the model to train at all roll-out steps without extra memory or
speed penalties.

HRES 0.25° analysis. We use 20 GPUs to fine-tune the LoRA layers for 13 k steps, each with a buffer
size of 200. This results in a total replay buffer size of 4000 samples. We use a dataset sampling period of 10
steps. To ensure the model learns to predict the early steps well (i.e., shorter lead-times) before attempting
to predict the later time steps, we use a schedule where for the first 5 k steps, we only keep predictions up to
4 days ahead in the buffer. The 4–10 day lead times are allowed in the buffer only after 5 k steps. We use a
constant learning rate of 5e−5.

HRES 0.1° analysis. Since the 0.1° data is 6.25× larger than 0.25° data, we use 32 GPUs with a buffer
size of 20 on each GPU. This is the maximum we can fit in the CPU memory of each node (i.e., 880 GB).
We use a dataset sampling period of 10 steps. We train the LoRA weights of the model for 6.25 k steps using
a constant learning rate of 5e−5.
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CAMS 0.4° analysis. We use 16 GPUs with a buffer size of 200 on each GPU and a dataset sampling period
of 10 steps. We train the LoRA weights of the model for 6.5 k steps using a constant learning rate of 5e−5.

HRES-WAM 0.25° analysis. We use 8 GPUs with a buffer size of 100 on each GPU and a dataset
sampling period of 10 steps. We train the LoRA weights of the model for 6 k steps using a constant learning
rate of 5e−5.

E Data infrastructure
Data loading represented one of the major technical challenges when training Aurora. First, due to the
sheer size of one datapoint (close to 2GB for 0.1° data), loading the data efficiently on the GPUs becomes
extremely challenging. Second, training Aurora on many heterogeneous datasets with different resolutions,
variables, and pressure levels, makes the task even more difficult as batching together samples from different
datasets becomes nontrivial and the workload of the GPUs must be balanced. In what follows, we describe
the data storage and data loading infrastruture we built to handle these two problems.

Data storage and preprocessing. Because of the large size of the datasets, the data cannot be stored
locally, so must be stored with a cloud solution. We use Azure’s blob storage. To ensure that data can be
efficiently downloaded from blob storage, we perform several optimizations in how the data is stored:

1. We co-locate data and compute to minimise latency and costs.

2. We preprocess each dataset into small chunks/files in order to make sure that a worker does not have
to download substantially more data than necessary to access a given sample from the dataset. This is
important because the raw form of many datasets stores a month (or more) of data into a single file.
We found the Zarr format to particularly useful for this.

3. For large datasets (like ERA5), we compress the files in order to minimise network bandwidth when
downloading samples.

4. For large datasets, we also make sure that all the variables for a given timestep are stored in the same file.
This minimises the number of concurrent file downloads that have to be performed to fetch one sample.

Data loading. To load heterogoenous data efficiently, we developed an advanced multi-source data loading
pipeline that can satisfy these requirements (Figure E3). Each dataset is instantiated by a yaml config
specifying how the data from that dataset should be loaded (e.g., dataset location, which lead time should
be used, the number of past steps to be supplied as input, etc.). Then, each dataset generates a stream of
BatchGenerator objects. These are lightweight objects containing the necessary metadata (e.g., file paths)
to download and generate at least one batch from the associated dataset. The streams of BatchGenerator
objects from all the datasets are combined into one stream via sampling, which allows us to adjust the
relative proportions of the datasets within each epoch. This is followed by shuffling all the BatchGenerator
objects and sharding them across GPUs. Up to sharding, all these lightweight operations are run identically
on all the GPUs using the same random seeds.

The expensive operations of the data loading pipeline follow the sharding. The BatchGenerator objects
sent to each GPU are unpacked into actual batches of data that can be used for training and inference. This
unpacking process, consists of a series of sequential transformations that are specific to each dataset and
the particular way it instantiates its BatchGenerator objects. In general, the sequence of transformation
includes: downloading some (compressed) dataset files, decompressing them, reading the data from the
files, generating the samples, mapping the variable names to a canonical set of names, performing data
checks (e.g., handling NaNs), batching, and, finally, loading batches to the device. All of these operations
are performed across multiple workers.

This data loading pipeline enables efficient training on multiple heterogeneous datasets. Performing batched
computations is straightforward since only samples from the same dataset are batched together, and therefore
there are no any additional constraints imposed on the model. To balance workloads across GPUs and
workers, one can use bigger batch sizes for the smaller datasets and smaller batch sizes for the bigger datasets,
since samples from different datasets have different sizes.

Dehghani et al. [2023] approach the problem of training ViTs on multi-resolution images at the model layer
level, by concatenating tokens from different images and using masking to prevent tokens from different
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Fig. E3: Overview of the multi-source dataloader. Each dataset produces a stream of lightweight BatchGenerator
objects. The streams are combined, shuffled, and sharded across GPUs. After sharding, each GPU receives a fraction of
the BatchGenerator objects, which are then unpacked. This step performs the expensive procedures like downloading
the data associated with the object from Azure blob storage. This procedure ensures that only samples from the
same together are batched together and provides the flexibility to perform custom per-dataset operations.

images from communicating during self-attention operations. However, their approach imposes a constraint
on the model architecture and it is difficult to implement in more sophisticated ViT architectures such as
the Swin Transformer [Liu et al., 2022, 2021]. Masked self-attention, even if implemented with sparse matrix
multiplications, is not able to achieve the expected theoretical performance due to the lack of semi-structured
sparsity support on current hardware. Therefore, another advantage of our data loading pipeline is that it
allows for the freedom to experiment on the model architecture side.

F Verification metrics
F.1 Main evaluation metrics
The main metrics we use to measure the performance of Aurora against other methods are the root mean
square error (RMSE) and the anomaly correlation coefficient (ACC). These metrics use a latitude weighting
because the variables and targets live on a non-uniform grid,

w(i) = cos(lat(i))
1
H

∑H
i′=1 cos(lat(i′))

, (F14)

which downweights smaller cells (closer to the poles) and upweights bigger cells (closer to the equator). The
weights are normalised to unit mean. While various versions of this weighting are used in practice, the form
used here is the one from Rasp et al. [2020].

Root mean square error (RMSE). The latitude-weighted RMSE measures the magnitude of the errors
between the predictions and the ground truth,

RMSE = 1
T

T∑
t=1

√√√√ 1
H × W

H∑
i=1

W∑
j=1

w(i)(X̂t
i,j − Xt

i,j)2, (F15)

where t indexes over the sample datasets, i, j index over the latitude and longitude of each image, and w(i)
is the latitude weighting factor.

Adjustments of the RMSE for wave variables. For angle-valued variables, when computing the
difference between two angles, we need to account the fact that 0° is equal to 360°, meaning that e.g. the
absolute difference between 10° and 350° should be 20° and not 340°. We account for this by replacing
|d| = |X̂t

i,j − Xt
i,j | with min(|d|, 360° − |d|).

In addition, when computing the RMSE, because wave variables have missing data and Aurora can also
predict the absence of data (see Supplementary B.8), either or both X̂t

i,j and Xt
i,j may be undefined. In

Equation (F15), we compute the average only over points where the target Xt
i,j is defined. When doing this,
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we correctly renormalise the latitude weights to average to one. Wherever the target Xt
i,j is defined but the

prediction X̂t
i,j is undefined, we replace X̂t

i,j with the normalisation mean.

Anomaly correlation coefficient (ACC). The ACC measures the correlation between the deviation of
the prediction and the ground truth from the daily climatology (i.e., the daily mean of a variable for that
day of the year). It takes the form

ACC = 1
T

T∑
t=1

H∑
i=1

W∑
j=1

w(i)(X̂t
i,j − Ct

i,j)(Xk
i,j − Ct

i,j)√√√√√
 H∑

i=1

W∑
j=1

w(i)(X̂t
i,j − Ct

i,j)2

 H∑
i=1

W∑
j=1

w(i)(Xt
i,j − Ct

i,j)2


, (F16)

where Ct
i,j is the daily climatology for location i, j for the day of the year corresponding to time t. Our daily

climatology is computed based on the climatology provided by Rasp et al. [2024].

F.2 Extreme weather metrics
Thresholded RMSE. The thresholded RMSE measures the magnitude of the errors between the predictions
and the ground truth. We apply an additional threshold here to indicate which latitude-longitude gridpoints
should be included in the sum. This can be written as:

RMSEg = 1
T

T∑
t=1

√√√√ H∑
i=1

W∑
j=1

w̃g,t
i,j (X̂t

i,j − Xt
i,j)2. (F17)

When computing RMSEs above a threshold, the weighting factor for the right-sided thresholds (plotted on
the right side of the relevant plots) is then defined by:

w̃g,t
i,j =

1(Xt
i,j > bg

i,j)w(i)∑H
i=1
∑W

j=1 1(Xg
i,j > bg

i,j)w(i)
. (F18)

For the left-sided thresholds, this is instead defined by:

w̃g,t
i,j =

1(Xt
i,j < bg

i,j)w(i)∑H
i=1
∑W

j=1 1(Xg
i,j < bg

i,j)w(i)
. (F19)

This incorporates the threshold b defined as:

bi,j = µi,j + g · σi,j , (F20)

where µ and σ are the mean and standard deviation of the ERA5 reanalysis data over all training years,
computed for each latitude-longitude point i, j. Here, g is a factor that is varied linearly for both positive
and negative values and is used to obtain the thresholded RMSEs at a number of points, and in the
figures we plot the resulting curves. The latitude weighting factor w(i) is as defined in Equation (F14). The
value is computed for every example frame, and this set of values, sampled with replacement, is used to
bootstrap 95% confidence intervals by recomputing Equation (F17). For g > 0, we plot RMSEg computed
using Equation (F18), and for g < 0, we plot RMSEg computed using Equation (F19).

The plots show a discontinuity at zero; this is to improve their readability. We remove the lower half of the
right-hand side of the curve and the upper half of the left-hand side of the curve. However, it is important
to point out that RMSEg is directly comparable to RMSE: RMSEg computed using Equation (F19) follows
RMSEg → RMSE as g → ∞, while RMSEg computed using Equation (F18) follows RMSEg → RMSE as
g → −∞.
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Fig. G4: Pretraining on diverse data and increasing model size improves performance. a: Performance
on ERA5 2021 at 6 h lead time for models pretrained on different dataset configurations, labeled C1–C4, without
fine-tuning. Adding low-fidelity simulation data from CMIP6 (i.e., CMCC and IFS-HR) improves performance almost
uniformly (C2). Adding even more simulation data improves performance further on most surface variables and for
the atmospheric levels present in this newly added data (C3). Finally, configuration C4, which includes comprehensive
atmospheric coverage and analysis data from GFS, achieves the best overall performance with improvements across
the board. b: For the same configurations considered in a, performance for extreme values on IFS HRES 2022 at 6 h
lead time. Shows RMSEs computed only on data below (left panes) or above (right panes) a threshold b. Pretraining
on many diverse data sources also improves the forecasting of extreme values. c: Bigger models obtain lower IFS
HRES validation loss for the same number of GPU hours. At 5 k GPU hours, we find that the validation loss behaves
like L(N) ∝ N−0.026 where N is the number of parameters, which corresponds to a 6% reduction in validation loss
for every 10× increase in model size.

G Data diversity and model scaling improve atmospheric
forecasting

A key tenet of the foundation model paradigm is that performance improves in a significant and predictable
fashion as the data and the model are scaled up [Kaplan et al., 2020, Hoffmann et al., 2024]. We provide
evidence that these findings from natural language processing and computer vision also hold for atmospheric
forecasting.

Most medium-range AIWP approaches have employed a single dataset in their training strategy, usually
ERA5 at 0.25° resolution. Training Aurora on multiple datasets allows us to examine the benefits of including
diverse datasets in pretraining. To that end, we pretrain the main Aurora model on four different dataset
configurations (labelled C1–C4) and compare (1) the RMSE of the models across different variables and
levels on ERA5 2021 (Figure G4a) and (2) the RMSE of the models for extreme values at the surface on
HRES 2022 (Figure G4b). Neither of these two years of data were included in pretraining and no further
fine-tuning was applied to these models.

Adding climate simulation data consisting of CMIP6-CMCC and CMIP6-IFS-HR alongside high-quality
ERA5 reanalysis data (C2) results in lower RMSEs than the ERA5-only model (C1) across all the groups of
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variables (except for 2T) (Figure G4a). Although these data are of lower fidelity compared to reanalysis
datasets like ERA5, including climate simulations increases the diversity of the data and, as our results
suggest, generalization performance. When also including IFS ensemble data, IFS HRES forecast data, and
the IFS ensemble mean (C3), the performance improves even further at the surface and around the levels
present in the IFS-ENS data, which are highlighted in the figure. Since the improvements seen with C3
diminish in other parts of the atmosphere, we also test an alternative configuration (C4), which provides
better coverage of the entire atmosphere. Additionally, it limits the samples used in training for the forecasts
datasets to one-day lead-times to increase the data quality. This last configuration performs best overall
and, for this reason, it is also the configuration used for the main results reported in this paper. Crucially,
notice that the downstream validation dataset we use here is a test year of ERA5 itself, so we see positive
transfer when including additional datasets even in the case where the downstream tasks overlaps perfectly
with ERA5.

Including additional data in pretraining not only improves the RMSEs in aggregate, but it also leads to
significant improvements (up to 35%) in the tails of the distribution at the surface on HRES 2022. Figure G4b
shows RMSEs computed across all cases where the underlying variable is higher than a threshold value
(see Supplementary F.2) for five surface-level variables. As before, C2 improves over C1, while C3 and C4
further improve upon C2. In all instances, the improvements compared to the ERA5-pretrained model (C1)
are mostly in the extremes. We postulate that this is because climate simulations and diverse data sources
expose the model to more rare events than historical data can provide, which ultimately improves the model
robustness in these regimes.

Overall, these results provide evidence that using a heterogeneous group of weather and climate datasets, of
mixed fidelity, can improve forecasting performance. In Supplementary G.1 we verify that these findings also
hold across the individual atmospheric variables and include additional results on HRES 2022. Finally, we
discuss one other dataset configuration that does not yield performance improvements.

Orthogonal to the data scaling dimension, we test the impact of model scaling on four pretrained Aurora
configurations, each corresponding to a different model size: 113 M, 290 M, 660 M and 1.3 B parameters (see
Supplementary B.9). All models are pretrained on the dataset mixture from C4 and continuously validated
on IFS analysis data. After the initial training phase, bigger models achieve lower validation losses for the
same number of GPU hours (Figure G4c). The bigger models achieve this whilst being trained on fewer data
samples (measured in number of tokens in the figure). When fitting a power law to the performance of the
three models at the 5 k GPU hours mark, we obtain a scaling law suggesting that validation performance
improves by approximately 6% for every 10× increase in model size. Note that the validation performance
on IFS analysis data is computed without fine-tuning on IFS analysis data, to limit computational costs.

G.1 Effects of data diversity
The following two subsections offer an overview of the main reasons why pretraining on multiple datasets
can have beneficial effects and a more detailed discussion of our results together with additional experiments.

G.1.1 Why increase the data diversity?
The use of several different dataset to train Aurora can help along several dimensions:

1. Climate simulations expose Aurora to entirely new simulated weather patterns not present in observa-
tional datasets, effectively increasing the variety and size of our training data. These simulations capture
potential future atmospheric states and extreme events that may be underrepresented in historical data.

2. Forecast datasets provide additional examples of realistic weather patterns that did not necessarily
occur, again increasing the diversity of training examples. These forecasts help the model learn about
plausible atmospheric evolution paths beyond what is captured in analysis data alone.

3. While GFS differs from IFS in its implementation, it models similar underlying physics with different
parameterizations. This variation helps Aurora learn more robust representations of atmospheric
dynamics that can avoid inheriting the biases of an specific NWP model.

4. Different datasets have varying spatial resolutions, numbers of pressure levels, and quality of physics
models. By training on this heterogeneous mix, Aurora learns to extract the best features from each
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source, e.g., high-resolution details from some datasets, better vertical structure from others, and
improved physical consistency from the most sophisticated models.

Overall, pretraining on the output of numerical simulators can be seen as an analogous practice to the
training of large language models on synthetically generated data [Gunasekar et al., 2024], a standard
practice in the field.

G.1.2 Detailed analysis
Here we examine the effects of increasing data diversity across all variables and levels in more detail. Besides
the four dataset configurations C1–C4 discussed before, we also consider one additional dataset configuration
based on all the datasets described in Table C3, which we label as C5. This latter configuration contains all
the datasets included in C3 and additionally Merra-2, GFS-T0 analysis, GFS forecasts and GEFS reforecasts.
We evaluate all pretrained jobs both on ERA5 2021 (Figure G6) and HRES-T0 analysis 2022 (Figure G5).
No further fine-tuning was performed after the pretraining.

On ERA5, we observe that the trend described before holds across all the individual atmospheric variables.
C2 improves over C1 almost universally, C3 improves further over C2 on most atmospheric variables for those
levels that are covered by the IFS-ENS and IFS-ENS-Mean datasets (which are the biggest datasets in C3).
Similarly, C4 improves over C2, as expected due to the inclusion relationship between them. Furthermore,
C4 also generally performs better than C3.

Perhaps surprisingly, we notice that C5, which is a superset of all the other configurations, does not perform
as well as other configurations and often does worse than the ERA5 job. There are couple of potential
hypothesis behind this. A first possibility is that some of the newly introduced datasets in C5 do not align
well with the evaluation dataset (ERA5). For instance, Merra-2 is the lowest resolution dataset in the entire
pretraining mix and its addition might harm performance on a high resolution dataset like ERA5. At the
same time, the GEFS reforecast dataset only includes three levels in the lower part of the atmosphere
(850, 925, 1000 hPa), so it does not provide a good coverage of the atmosphere. Another possibility is that
including such a large amount of data likely requires significantly more training than 150 k steps to yield
good performance.

On HRES T0 2022, the trend for the surface variables looks looks similar to ERA5, with the exception of
2T. Since HRES T0 is missing an extra assimilation step for the surface, 2T in HRES T0 exhibits different
biases compared to 2T in ERA5. We believe including any kind of IFS forecast data in pretraining helps
alleviate this distribution mismatch, leading to substantial improvements. In terms of the atmosphere,
performance also generally improves across most variables with the addition of more data, but the order of
the configurations fluctuates more. One interesting case is specific humidity (Q), where for unknown reasons,
C3 and C4 perform significantly worse than the ERA5-pretrained model on some levels. This could be a
potential explanation for why Aurora performs slightly worse than GraphCast at certain lead times and
levels of Q in the scorecard from Figure H8.

Finally, we note that on both test datasets, the biggest improvements from additional data on the atmospheric
variables are obtained for the geopotential (Z). This is likely explained by the fact that the physical equations
describing the evolution of the geopotential are well-understood and, therefore, the NWP-simulations we add
in pretraining provide very high-quality data for this variable. Interestingly, the geopotential also improves
universally on C2, despite being absent from the new datasets in this configuration. This demonstrates the
ability of the model to learn useful patterns even from incomplete variable sets.

G.2 Model scaling laws for surface-level variables
In Figure G4c, we saw that bigger models obtain lower validation loss for the same number of GPU hours.
In Figure G7, we show that the same conclusion is also true for every surface-level variable individually.
Because the training loss is an aggregate of approximately 70 different variables (four surface-level variables
and five atmospheric variables at thirteen different pressure levels), how individual variables scale as model
size increases is more noisy than the aggregate loss. Nevertheless, we observe clear scaling behaviour for
every surface-level variable individually.
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Fig. G5: Effects of data scaling measured vs HRES-T0 analysis 2022 across five dataset configurations. The top part
of the figure shows aggregate RMSE per level normalised by the performance of the ERA5 pretrained model. The
bottom part shows performance across all the individual atmospheric variables and levels.
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Fig. G6: Effects of data scaling measured vs ERA5 2021 across five dataset configurations. The top part of the figure
shows aggregate RMSE per level normalised by the performance of the ERA5 pretrained model. The bottom part
shows performance across all the individual atmospheric variables and levels.
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H Comparison against GraphCast, Pangu, and IFS HRES at 0.25°
resolution

The vast majority of AI models for weather prediction have been (pre)trained at 0.25° resolution on a single
dataset. As an additional validation of the benefits of fine-tuning a large model pretrained on many datasets,
we compare Aurora against operational GraphCast [Lam et al., 2023], which is pretrained only on ERA5 and
fine-tuned to IFS-HRES analysis, rendering it the closest setup to Aurora. Moreover, operational GraphCast
is currently considered the state-of-the-art in operational AI weather forecasting at 0.25° and lead times up
to 5 days [Rasp et al., 2024]. As an additional datapoint, we include in the comparison Pangu weather [Bi
et al., 2023], another AI model which is widely considered competitive. For consistency we apply the same
evaluation procedure to all three AIWP models. We also include IFS HRES forecasts in this comparison,
which is the gold standard in operational numerical weather prediction. We show that Aurora outperforms
both when measured against IFS analysis, weather station observations, and extreme values.

H.1 Experimental setup
This comparison uses the HRES-T0 2022 dataset as a test year and is carried out at the standard 0.25°
resolution used in AIWP. To this end, Aurora is fine-tuned on HRES-T0 “analysis” data for years 2016-2021
(see Supplementary C.2), the same years that operational GraphCast was fine-tuned on. In order to ensure
a consistent comparison against operational NWP systems, both GraphCast and Aurora are evaluated
using daily 00 and 12 UTC initialisation times from the HRES-T0 dataset provided by WeatherBench2. As
recommended, we treat HRES-T0 as the ground truth targets for this evaluation. To facilitate a complete
comparison between models across different variables, pressure levels and lead times, we compute and
visualize RMSE skill scores in the form of relative RMSE difference between the models that are compared,
normalized by the RMSE score of the model we compare against. We also include comparisons based on the
ACC metric in Supplementary I.

Comment on the evaluation dataset. It is important to clarify that this evaluation procedure does not
compare against ERA5 (as seen in GraphCast) for two primary reasons:

1. This procedure evaluates the system under operational conditions following the protocol established
by ECMWF [Ben-Bouallegue et al., 2024]. This represents a real-world operational evaluation. Note
that GraphCast [Lam et al., 2023] had to use a rather ad hoc procedure to attempt to compensate for
the fact that ERA5 was used on the input and output side for their model (see section 5.2.1 of the
GraphCast supplementary material).

2. The IFS HRES analysis is closer to the ground truth state of the weather than ERA5. This is because
ERA5 uses an NWP model that was operational in 2017 [Ben-Bouallegue et al., 2024]. In the seven
years since, IFS has undergone a large number of improvements.

We do not use the original WeatherBench2 evaluation protocol because until recently this used comparisons at
1.4°of ERA5 as inputs and targets. Not only is this a low spatial resolution, ERA5 inputs are reanalyses and
as such do not reflect available information at the time of a forecast because they incorporate observational
data from the future. Moreover, as mentioned above, ERA5 is considered less accurate to the ground truth
than IFS HRES analysis. More recently, WeatherBench2 started to support the evaluation protocol outlined
above.

H.2 Aurora versus GraphCast at 0.25°
Aurora consistently outperforms GraphCast [Lam et al., 2023] across the vast majority of target variables,
pressure levels, and lead times (Figure H8). The performance gains are most pronounced at lead times past
3 days, as well as for the upper atmospheric levels where we see a reduction in RMSE up to 40%. Large
improvements up to 10-15% are observed at both short and long lead times, especially for variables such
as temperature (T), geopotential height (Z) and wind velocity components (U, V). The smallest gains are
observed for specific humidity, where GraphCast tends to yield more accurate predictions at shorter lead
times (1–3 days) for the surface and lower atmospheric levels.

At longer lead times, Aurora’s forecasts more closely resemble the ensemble mean than GraphCast (see
Supplementary I.8), but Aurora also outperforms GraphCast at short lead times on U, V, T, and Z. Taken
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together, we postulate that these results are a collective consequence of Aurora’s scale, both in terms of
architecture design and training data corpus, as well as its pretraining and fine-tuning protocols. We discuss
the origin of Aurora’s performance in more detail below.
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Fig. H8: Scorecard comparing Aurora and GraphCast at 0.25◦. Aurora matches or outperforms GraphCast on 94% of
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lead time, which corresponds to the lead time GraphCast was roll-out fine-tuned on.

For a more detailed comparison against GraphCast, we include various additional roll-out plots: RMSEs
for the headline metrics (Figure H9), RMSEs in the lower atmosphere (Figure H10), ACCs in the lower
atmosphere (Figure H12), RMSEs in the upper atmosphere (Figure H11), and ACCs in the upper atmosphere
(Figure H13).

We believe Aurora’s improved performance over GraphCast can be attributed to several factors:

1. Data diversity: Our ablation studies in Supplementary G demonstrate clear benefits from diverse
training data, with Figure G4a showing improved accuracy across variables when including climate
simulations and multiple weather datasets. Figure G4b provides concrete evidence that this diversity
leads to up to 35% error reduction in extreme value prediction compared to training on ERA5 alone.

2. Model size and architecture: Aurora’s larger size (1.3B vs GraphCast’s 37M parameters) translates
to measurable performance gains, as shown by our scaling experiments in Figure G4c where validation
performance improves systematically with model size. Our flexible encoder architecture (detailed in
Supplementary B.1) enables efficient processing of heterogeneous inputs, which is crucial for learning
from diverse datasets.

3. Foundation model approach: The effectiveness of our pretraining strategy is demonstrated in
Supplementary Supplementary G.1, where Figure G5 and Figure G6 show consistent improvements
across variables and pressure levels as we include more diverse datasets in pretraining. This validates
our approach of leveraging knowledge from multiple domains to improve overall performance.

4. Advanced fine-tuning strategy: Our two-stage fine-tuning process, including the use of LoRA
for roll-out fine-tuning (Supplementary Supplementary D.4), provides better control of the model’s
behavior at different lead times. The benefits of this approach are evident in our comparison against
GraphCast (Figure H8), where Aurora shows improved performance across the vast majority of targets,
particularly at longer lead times.
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Fig. H10: Root mean square error (RMSE) of Aurora 0.25◦ compared to GraphCast in the lower atmosphere. Shows
both unnormalised and normalised RMSEs, where GraphCast is used as the baseline. The Pangu weather results at
0.25◦ are included for reference.
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Fig. H11: Root mean square error (RMSE) of Aurora 0.25◦ compared to GraphCast in the upper atmosphere. Shows
both unnormalised and normalised RMSEs, where GraphCast is used as the baseline. The Pangu weather results at
0.25◦ are included for reference.
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H.3 Aurora versus Pangu at 0.25°
To further expand upon the evaluation of Aurora at 0.25° against existent AI models, we include a scorecard
comparison with Pangu weather [Bi et al., 2023] 0.25° in Figure H14. Aurora consistently out-performs
Pangu across all variables and pressure levels.
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Fig. H14: Scorecard of Aurora 0.25° versus Pangu at 0.25°. Aurora out-performs Pangu across all variables and
pressure levels.

H.4 Aurora versus IFS HRES at 0.25°
To further expand upon the evaluation of Aurora at 0.25°, we include a scorecard comparison with IFS
HRES 0.25° in Figure H15. Aurora largely outperforms HRES, but despite its improvements in the upper
atmosphere compared to GraphCast, it still performs worse than HRES at the top of the atmosphere.
Figure H16 shows a scorecard comparing Aurora at 0.25° to the IFS ensemble mean. Aurora outperforms
the ensemble mean up to 7 days lead time.
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Fig. H15: Scorecard of Aurora 0.25° versus IFS HRES 0.25°. Despite significantly improving versus GraphCast in
the higher atmosphere, Aurora is also worse than HRES at the top of the atmosphere. However, Aurora generally
outperforms HRES on other levels.

H.5 Verification against weather station measurements at 0.25°
As for the high-resolution model, we also evaluate Aurora against station observations for forecasts issued
at 00 UTC between 2 January 2022 and 19 December 2022. Figure H17 shows the RMSE and MAE as
a function of lead time for the 0.25° AIWP models versus IFS HRES. The relative error in temperature
between Aurora and GraphCast tracks very closely with the scorecard results in Figure H8. Despite an
advantage in resolution, IFS HRES only leads within the first 12 hours. For wind speed, Aurora outperforms
GraphCast by a larger margin over the first 6 days compared to evaluations on gridded data, but performs
worse than GraphCast after day 7 on RMSE values, particularly on 18 UTC timestamps. These results show
that AIWP models such as Aurora are still capable of achieving high forecast accuracy as measured by
observations, even at the coarser 0.25° resolution.
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around 7 days lead time.
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H.6 Extreme event prediction at 0.25°
From a meteorological perspective, accurate forecasting of the extremes of surface weather, such as wind
speed and temperature, is of critical importance in forward-planning to mitigate the impact on life. To verify
the performance of Aurora in predicting the tails of the relevant distributions, we present a comparison
with GraphCast and IFS HRES using the 06 UTC and 18 UTC initialisations from the 2022 IFS HRES
0.25° dataset in Figure H18. Here we show RMSEs computed in the upper and lower tails of the data
distribution as described in Supplementary F.2, normalized by the RMSEs from IFS HRES. By sweeping a
threshold, we can analyse performance as we move further into the extremes. Values for thresholds above
zero are shown on the right of the x-axis in each plot, and values for thresholds below zero are shown on the
on the left of the x-axis in each plot.

We find that Aurora outperforms GraphCast on wind speed prediction at the surface. At longer lead times,
the performance of AIWP models relative to IFS HRES becomes markedly improved across the distribution.
Note however that 2T exhibits a difference in behaviour between the warmer and colder sections of the
distribution; it is reported that IFS HRES performance for winter extremes is biased, resulting in less
accurate forecasting during winter months [Ben-Bouallegue et al., 2024]. Since AIWP models include such
biased forecasting data rather than just forward simulations within physical constraints, there is a tendency
to exhibit these biases when compared to NWP models such as IFS HRES.

In Figure H19, we show the thresholded RMSES for atmospheric variables distributed over four pressure
levels throughout the atmosphere. At the higher pressure levels (i.e., near the surface), results are consistent
with those shown for the surface variables in Supplementary H.6. However, the temperature in the atmosphere
is more typically distributed as it is less susceptible to bias through near-surface effects. In the higher
atmosphere, overall performance is more challenging, although Aurora remains able to outperform GraphCast,
consistent with total RMSE results shown in Figure H8.
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Fig. H19: Thresholded RMSE results for atmospheric variables at four pressure levels distributed throughout the
atmosphere, presented as percentages relative to the performance of IFS HRES at 0.25° resolution. The origin of
these curves is explained in Supplementary F.2. The discontinuity at zero reflects that only one side of the curve is
shown; on the right hand side of each figure we show RMSEg where target values are above the threshold determined
by g, and on the LHS of the figure, RMSEg is the cumulative RMSE found against target values below the threshold.
The shading represents 95% confidence intervals obtained through bootstrapping. Specifically, for each threshold
value, we compute RMSE values using Equation (F17) in Supplementary F.2, and these values are sampled with
replacement to estimate the confidence intervals.
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I Additional results
In this section, we present results that supplement the results in the main body.

I.1 Comparison against operational CAMS
It is important to note that we take CAMS analysis data as the ground truth. This is because CAMS
analysis is produced by combining CAMS forecasts with observations (i.e., assimilation), the lack of real-time
emission data means that CAMS analysis is more biased towards similarity with CAMS forecasts than
is the case for meteorological variables, especially for near-surface pollution variables at short lead times.
For example, the PM values are only weakly constrained via aerosol optic depth satellite measurements
as CAMS does not assimilate any real-time emission observations. This may disadvantage Aurora in this
comparison. Below are the details of the various experiments we conduct.

Figure I20 shows a scorecard for the full collection of CAMS variables. Aurora is competitive to CAMS
(within 20% RMSE) on 96% of all targets, and Aurora matches or outperforms CAMS on 76% of all targets.
Figure I21 compares Aurora RMSEs to CAMS for only the surface-level variables, Figure I22 compares
the RMSE of Aurora, CAMS, and the persistence prediction at three days lead time. Aurora matches or
outperforms CAMS on 89% of all variables and outperforms the persistence prediction for all variables and
all lead times.

Iraq sandstorm. Figure I23 visualises predictions for PM10 by Aurora and CAMS for the sandstorm that
hit Iraq on 13 June 2022.

Classification of levels of PM2.5 and PM10. Figure I24 compares the accuracy, precision, and recall of
CAMS and Aurora for classifying levels of PM2.5 and PM10 according to the categories of AirNow [U.S.
Environmental Protection Agency, 2024]. Aurora and CAMS both generally obtain very high accuracy,
although Aurora predictions come at a fraction of the cost. At longer lead times, Aurora tends to obtain higher
precision and lower recall, meaning that predictions by Aurora are generally more conservative. For example,
for unhealthy (or worse) levels of PM2.5, on average Aurora has 4% higher precision but 8% lower recall.

Spectral analysis. Figure I25 includes a spectral analysis of Aurora’s predictions for all surface-level
variables, performed according to the method in Lam et al. [2023]. For longer lead times, power at smaller
wave lengths tends to decrease, meaning that the predictions tend to become more smooth. For TC NO, TC
CO, TC NO2, TC SO2, and TC O3, this decrease is comparable to that for the meteorological variables 2T,
U10, V10, and MSL. For PM1, PM2.5, and PM10, the decrease is larger.

Comparison against a model trained from scratch on CAMS data. We train the model from scratch
on the CAMS analysis training dataset detailed in Supplementary C.4 to clarify the impact of pretraining on
our ability to predict atmospheric variables. The scorecard results are presented in Figure I26. Fine-tuned
Aurora consistently outperforms any attempt to train a model to predict these variables from scratch, likely
due to the inherently challenging distributional behaviour of these variables, and the small amount of data
available.
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Fig. I24: a: Classification accuracy of levels of PM2.5 according to the following categories from AirNow: good
(9.1 µg m−3 or lower), moderate (35 µg m−3 or lower), lightly unhealthy (35 µg m−3 or higher), unhealthy (55 µg m−3
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(155 µg m−3 or lower), lightly unhealthy (155 µg m−3 or higher), unhealthy (255 µg m−3 or higher), very unhealthy
(355 µg m−3 or higher), and hazardous (425 µg m−3 or higher). The accuracies are computed over the period Jun
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Fig. I25: Spectral content of the predictions for the surface-level variables by Aurora, compared to CAMS analysis.
The computation uses the period Jun 2022 to Nov 2022 inclusive.
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I.2 Comparison against operational IFS HRES-WAM
Figure I27 shows a scorecard for all wave and meteorological variables. Aurora is competitive (within 20%
RMSE) to HRES-WAM on 95% of all targets, and Aurora matches or outperforms HRES-WAM on 85% of
all targets. Figures I28 and I29 compare Aurora’s RMSEs to HRES-WARM for all meteorological and wave
surface-level variables.
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Fig. I27: Latitude-weighted root mean square error (RMSE) of Aurora 0.25◦ relative to HRES-WAM 0.25◦, where
negative values (blue) mean that Aurora is better. Only for Q at 50 hPa, the RMSE initially exceeds 100% and peaks
at 306%; no other variable exceeds 100%. Aurora is competitive (within 20% RMSE) to HRES-WAM on 95% of
all targets, and Aurora matches or outperforms HRES-WAM on 85% of all targets. Note that the meteorological
variables are from HRES T0, and the surface-level wave variables from HRES-WAM. See Section 4 in the main body.
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Fig. I28: Latitude-weighted root mean square error (RMSE) of Aurora 0.25◦ compared to HRES-WAM 0.25◦ on the
meteorological surface-level variables and main wave variables. Shows both unnormalised and normalised RMSEs.
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Fig. I29: Latitude-weighted root mean square error (RMSE) of Aurora 0.25◦ compared to HRES-WAM 0.25◦ on the
wave variables of the various wave components. Shows both unnormalised and normalised RMSEs.
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I.3 Details for tropical cyclone forecasting
In this appendix, we describe the tropical cyclone tracker and provide more detail on how the comparison
against various agencies in various regions was performed.

I.3.1 Baselines and ground truth
All baseline models from Figure 4a are summarised in Table I6. For the North Atlantic and East Pacific we
compare Aurora to both the official forecast and multiple forecast models used by human forecasters to
create these products. In all cases we compare the early version of Aurora (described below) to official and
early models, ensuring that the comparison is between products available at the forecast time. Data for the
official forecasts and all guidance models is taken from the Automated Tropical Cyclone Forecasting System
A-Decks [Sampson and Schrader, 2000]. For the Northwest Pacific, multiple agencies issue official forecasts.
We compare Aurora to forecasts from the Joint Typhoon Warning Centre, Central Weather Administration
Taiwan, China Meteorological Administration, Japan Meteorological Agency and Korea Meteorological
Administration. Finally, for the Australian Region, we compare to the offical predictions from the Australian
Bureau of Meteorology.

For ground truth we use the International Best Track Archive for Climate Stewardship (IBTrACS). IBTrACS
is a global database that consolidates tropical cyclone data from multiple meteorological agencies worldwide.
It provides comprehensive historical records on storm tracks, intensities, and characteristics, supporting
climate research and storm impact analysis.

I.3.2 Considerations for fair comparison to baselines
In making comparisons to the baselines, we are careful not to advantage Aurora over the baselines in any
way. Two key considerations need to be made: dealing with early versus late models and instances where the
tracker fails.

Early versus late models. In tropical cyclone forecasting, models are classified as either early or late
depending on when they become available in the forecast cycle. Track forecast models are initialised at UTC
00, UTC 06, UTC 12 and UTC 18. Official track forecasts are due three hours after these times. Early
models are models whose predictions are available before the end of this three hour window. Predictions of
early models can therefore be used to guide the official prediction. In contrast, predictions of late models
become available after the three hour window. Predictions of late models cannot be used to guide the official
prediction. To use late models to guide the official prediction, predictions from one forecast cycle earlier
must be used. For example, the prediction for the initialisation at UTC 06 can be used guide the official
track prediction at UTC 12.

Although Aurora is able to be run in minutes, the assimilation window for the initial conditions used in
this study, HRES T0, is up to three hours past the analysis time. As this places Aurora right on the divide
between early and late models, out of an abundance of caution we opt to delay all predictions by six hours.
For example, the UTC 12 track prediction from Aurora is generated by running Aurora from the HRES T0
initial conditions from UTC 06. This ensures that Aurora is an early model and suitable for comparison
with the official forecasts.

Tracker failure. The tracker used in this study is much simpler than those used operationally. Whilst we
manually verified that this simple tracker achieves excellent performance in the vast majority of cases, it
occasionally fails, resulting in incorrect predictions. To not advantage Aurora in any way, we never reject any
track prediction, meaning that we also retain the track prediction whenever the tracker fails. In fact, this
slightly disadvantages Aurora in the comparison, as the baselines and IBTrACS use state-of-the-art trackers.

I.3.3 Tracker
Our heuristic tracker is based on forecasts by Aurora 0.25◦ (Supplementary H) initialised with HRES T0.
The tracker attempts to follow a local minimum in predictions for MSL. A challenge in this approach is
that MSL may be plagued by multiple local minima due to local topological features like mountains. We
therefore adopt a multi-step procedure that resorts to Z700 when detection of the MSL local minimum fails.
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Table I6: Baselines for the tropical cyclone tracking experiment. NHC refers to National
Hurricane Centre.

Model Agency Description

North Atlantic and East Pacific
OFCL NHC Official forecast
OCD5 NHC Statistical baseline: climatology and persistence model
HWFI NHC Multi-layer regional dynamical: Hurricane Weather and Research

Forecasting Model
HMNI NHC Multi-layer regional dynamical: Hurricanes in a Multi-Scale Ocean-

Coupled Non-Hydrostatic Model
CTCI NHC Multi-layer regional dynamical: COAMPS-TC using GFS initial and

boundary conditions
NVGI NHC Multi-layer global dynamical: Navy Global Environmental Model
EMXI NHC Multi-layer global dynamical: ECMWF global model
CMCI NHC Multi-layer global dynamical: Environment Canada global model
AEMI NHC Consensus: GFS ensemble mean
FSSE NHC Corrected consensus: FSU super-ensemble
TVCA NHC Consensus: average of at least two of GFSI, EGRI, HFAI, HFBI, EMXI,

CTCI, HWFI HMNI EMNI
HCCA NHC Corrected consensus: weighted average of AEMI, CTCI, EGRI, EMNI,

EMXI, GFSI, HFAI, HFBI, HWFI, and UEMI

Northwest Pacific
PGTW Joint Typhoon Warning Centre Official forecast
CWA Central Weather Administration Taiwan Official forecast
BABJ China Meteorological Administration Official forecast
RJTD Japan Meteorological Agency Official forecast
RKSL Korea Meteorological Administration Official forecast

Australian Region (Aus)
BoM Australian Bureau of Meteorology Official forecast

When we say that the tracker attempts to find the local minimum closest to a reference position in a x◦ × x◦

box, the tracker performs the following procedure. It first selects a x◦ × x◦ box centred around the reference
position. Within this box, a point is classified as a local minimum if it attains the lowest value within a
further 2◦ × 2◦ box centred around that point. The tracker then finds the local minimum (according to this
classification) in the x◦ × x◦ box closest to the reference position. If this closest local minimum lies on the
edge of the x◦ × x◦ box, then we consider this a failure and say that no local minimum can be found.

The tracker is initialised with the current latitude–longitude position of the TC. Let the current position
be the initialisation. If a 5◦ × 5◦ box around the current position is clear of land, the tracker attempts to
update the current position to the closest local minimum in this box for the 6 h prediction of MSL. If the
current position was not updated, the tracker attempts a 4◦ × 4◦ box, a 3◦ × 3◦ box, a 2◦ × 2◦ box, and
eventually a 1.5◦ × 1.5◦ box. If the current position is then still not updated, the tracker attempts to update
the current position to the closest local minimum in a 5◦ × 5◦ box for the 6 h prediction of Z700, and then
repeats the procedure with varying box sizes for MSL. The resulting current position is the track prediction
at lead time 6 h.

For all following lead times, a guess x̃t+1 is made for the new latitude–longitude position by linearly
extrapolating the sequence of tracked latitudes and longitudes based on the previous eight estimates
(corresponding to two days). Now call this linear extrapolation the current position. Using predictions 6 h
further into the future, the current position is then updated exactly as for the initialisation. The resulting
current position is the track prediction 6 h further into the future. We repeat this procedure until a track up
to five days lead time has been produced.

I.3.4 Details for Figure 4a
To compute a column in Figure 4a, we consider all TCs in 2022 and 2023 in the relevant region. For every
storm, we consider all times when a latitude–longitude position is available in IBTrACS. Call such a time a
forecast time. From all forecast times, we only consider the times when the associated storm is classified
as disturbance or tropical. For every such forecast time, we generate a five-day track forecast with Aurora
and consider the track forecast by the model on the x-xis. We then compute the track forecast errors at
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every lead time where the storm is classified as disturbance or tropical. This restriction to forecast times
and lead times where the the storm is classified as disturbance or tropical is conform the NHC evaluation
procedure [NHC, 2022]. By averaging over all storms and forecast times, we obtain a mean absolute error
(MAE) at lead times one to five days for both Aurora and the model on the x-axis. If the model on the
x-axis happens to have no prediction at a certain lead time for a particular forecast time, then we ignore
that particular lead time for that particular forecast time in the mean computation for both Aurora and the
model on the x-axis. We note that this slightly advantages the baselines in this comparison, since Aurora is
forced to always produce a forecast. The MAEs at all lead times between Aurora and the model on the
x-axis are finally compared to produce the column of Figure 4a.

Call a forecast time for a particular storm a storm-time pair. Following the above procedure, for the North
Atlantic and East Pacific, we consider 1333 storm-time pairs from 76 different storms; for the West Pacific,
737 storm-time pairs from 47 different storms; and for the Australian region, 213 storm-time pairs from 35
different storms.

Finally, for every square of Figure 4a, we compute a 95% uncertainty interval by resampling entire tropical
cyclones with replacement [Lam et al., 2023]. Whenever a storm is resampled, all associated storm-time
pairs are added to the sample. This resampling procedure is conform the statistical structure of the data
and approximates the error w.r.t. taking the average over infinitely many storms. If the 95% uncertainty
interval for a square includes zero, “≈” is depicted in the middle of the square.

I.4 Comparison against operational IFS HRES at 0.1°
We include roll-out plots of Aurora at 0.1° compared to HRES forecasts at 0.1° for headline variables
(Figure I30) and the lower atmosphere (Figure I31). Due to the lack of 0.1° forecasts in the upper atmosphere,
we include as a preliminary result a scorecard versus HRES 0.25° in Figure I32. Although this is not an
apples-to-apples comparison, HRES 0.25° RMSEs tend to be lower than HRES 0.1° RMSEs since higher-
resolution models have more fine-grained details that they need to get right. Therefore, the scorecard provides
a good approximation to the performance of Aurora 0.1° in the upper atmosphere.

Aurora 0.1° model trained with no pretraining. To demonstrate the impact of pretraining we also
include a scorecard (Figure I33) comparing the performance of Aurora 0.1° fine-tuned versus. the model
trained from scratch on the 0.1° data. The fine-tuned model consistently outperforms a model trained from
scratch despite considerable effort being expended to optimise model training without first pretraining.
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Fig. I30: Root mean square error (RMSE) of Aurora 0.1◦ compared to HRES 0.1◦ for headline variables. Shows
both unnormalised and normalised RMSEs.
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I.5 Comparison against weather station measurements
Most verification efforts for AIWP models have focused on gridded reanalysis data such as ERA5 [Rasp
et al., 2024]. Not only are weather station observations more reflective of weather experienced by people,
but they can also reveal deficiencies in models relying on diagnostic parameters generated by the NWP
models producing the analysis. Therefore, we also evaluate Aurora’s forecasts on raw observations from the
WeatherReal-ISD dataset [Jin et al., 2024]. This evaluation includes daily forecasts issued at 00 UTC between
2 January 2023 and 19 December 2023. Aurora outperforms IFS HRES for 10 m wind speed forecasts across all
lead times up to 10 days (Figure 5b). Further results for 2 m temperature are available in Supplementary F.2.
This result shows how a global high-resolution AIWP model can set a new state-of-the-art as measured by
real weather observations.

Aurora is initialised from the official analysis product, while forecasts are initialised from HRES T0. The
former includes an additional assimilation step for the surface, which improves the 2T estimate. Therefore,
Aurora has an unfair advantage in terms of initial conditions when compared on 2T (Figure I34). Nonetheless,
the errors of HRES and Aurora remain parallel as the lead time increases which shows that the forecast
quality of Aurora does not degrade over time compared to HRES.

I.6 Benefits of modelling at 0.1° resolution
In Section 6, we fine-tune Aurora for high-resolution predictions at 0.1◦. Instead of fine-tuning at 0.1◦

resolution, one could ask why not simply fine-tune at 0.25◦ and simply interpolate the predictions to 0.1◦

resolution? The benefit of modelling at 0.1◦ resolution is that the higher resolution can better represent
physical processes at small scales, and hence predictions at 0.1◦ can capture these effects, whereas predictions
at 0.25◦ could struggle. The meso-β (20 km to 200 km) scale exactly represents physical processes that 0.1◦

should be able to capture but 0.25◦ might struggle with, such as mesoscale convective systems and complexes
or mountain and valley breezes. In this appendix, we provide numerical evidence that fine-tuning at 0.1◦

produces superior predictability for physical processes at the meso-β scale.

Methodology. We compare the predictability of Aurora 0.1◦ to Aurora 0.25◦ regridded to 0.1◦ using
the PyPI package xesmf on three different meteorological scales: the meso-β scale (20 km to 200 km), the
meso-α scale (200 km to 2,000 km), and the synoptic scale (2,000 km and larger). Predictability is measured
with the coefficient of determination, R2, which quantifies precisely which proportion of the data explained
by the predictions. We take HRES analysis at 0.1◦ as the ground truth. To disentangle R2 at different
meteorological scales, we use the spherical harmonic transform from torch-harmonics [Bonev et al., 2023]
to decompose the prediction error for both models into errors at different wavelengths. We then select the
appropriate wavelengths for every meteorological scale, and sum the squared amplitudes back to a total
MSE for that scale. The MSE is divided by the total variance of the ground truth in the same wavelength
band, and the resulting ratio is equal to 1 − R2. The difference in R2, R2

Aurora 0.1◦ − R2
Aurora 0.25◦ , finally

quantifies the difference in predictability between Aurora 0.1◦ and Aurora 0.25◦ regridded to 0.1◦.
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Fig. I35: At various meteorological scales, comparison of R2, a measure of predictability, of Aurora 0.1° to Aurora
0.25° regridded to 0.1° resolution. IFS HRES analysis at 0.1◦ is used as the ground truth. R2 is estimated from
predictions for UTC 00 and UTC 12 from the period Jan 2023 to Mar 2023 inclusive. Purple means that Aurora 0.1◦

has better predictability, and green means that Aurora 0.25◦ regridded to 0.1◦ has better predictability.

Results and conclusion. Aurora 0.1◦ demonstrates substantially improved predictability for meso-β-scale
physical processes (a 5.4% increase in R2 on average), whereas predictability for meso-α-scale and synoptic
physical processes remain roughly unchanged (differences of 0.3% and 0.03% on average) (see Figure I35).
That Aurora 0.1◦ shows substantially improved predictability on the meso-β scale is not a surprising finding,
because this is exactly the scale that a resolution of 0.25◦ cannot effectively capture, but a resolution of 0.1◦

can.

I.7 Storm Ciarán
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Fig. I36: Minimum mean sea level pressure (left) and maximum 10 m wind speed (right) for Storm Ciarán, at
0.25° and 0.1° resolution, both with and without LoRA fine-tuning.

Table I7: Bounding boxes that track Storm Ciarán. We used these bounding boxes to compute the maximum 10 m
wind speed and minimum MSL.

Time range Latitudes Longitudes

2023-10-30 18 UTC to 2023-10-31 06 UTC [35°, 48°] [−75°, −48°]
2023-10-31 12 UTC to 2023-11-01 00 UTC [40°, 48°] [−50°, −25°]
2023-11-01 06 UTC to 2023-11-01 12 UTC [35°, 50°] [−65°, −10°]
2023-11-01 18 UTC to 2023-11-02 00 UTC [35°, 60°] [−25°, 10°]
2023-11-02 06 UTC and later [35°, 60°] [−10°, 10°]

Storm Ciarán was a high-impact windstorm which took place across North-West Europe in late 2023. In
Figure 5d, we reproduce the findings by [Charlton-Perez et al., 2024] and include predictions from Aurora at
0.1° resolution. All models are initialized on 31 Oct 00 UTC using the latest cycle of IFS analysis, CY48R1.
We observe that among the AI models tested, Aurora stands out as the only one capable of accurately
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predicting the abrupt rise in maximum 10 m wind speed. It forecasts approximately 7 ms−1 higher than
the other AI techniques, closely matching IFS analysis, which we take to be the ground truth. Notably,
FourCastNet [Pathak et al., 2022], GraphCast [Lam et al., 2023], and Pangu-Weather [Bi et al., 2023] are
constrained to a 0.25° resolution, potentially hindering their ability to capture rapid onset phenomena.
However, even at 0.25° resolution, Aurora demonstrates some capability in capturing this sharp increase,
albeit to a lesser degree than its 0.1° counterpart; see Figure I36.

Figure 5c shows Storm Ciarán’s intensification over a 24 hour period, where we compare Aurora forecasts
(top) to IFS analysis (bottom) visually in terms of 10 m wind speed. We also plot the minimum MSL,
corresponding to the center of the storm, and find that the Aurora’s forecasts are similar to IFS HRES
analysis. The primary difference lies in the level of detail: IFS analysis captures higher spatial frequency
content, whereas Aurora’s forecasts are smoother, although less so than those from the 0.25° model. Despite
this disparity, the forecasts are visually similar.

Two versions of Aurora. We compare Aurora variants with and without LoRA fine-tuning for predicting
Storm Ciarán. Figure I36 shows minimum mean sea level pressure (left) and maximum 10 m wind speed
(right), including the two variants of Aurora, namely, with and without LoRA fine-tuning, at both 0.25° and
0.1° resolution. We evaluate all methods based on how closely they resemble IFS analysis at the corresponding
resolution, and find that, as expected, the Aurora variants at 0.1° resolution clearly outperform those at
0.25° resolution.

For minimum mean sea level pressure, the variants with LoRA fine-tuning perform better (i.e., align more
closely with IFS analysis). However, for maximum 10m wind speed, the variants without LoRA fine-tuning
perform better, capturing the peak wind speeds more accurately. We see that Aurora at 0.1° (with LoRA
fine-tuning) aligns almost perfectly with IFS analysis at 0.1°. In Section 6, we showed that Aurora is the
only AIWP model capable of capturing the peak in maximum 10 m wind speed on 2 November 2023 at
00 UTC, where the best version of Aurora is at 0.1°, without LoRA fine-tuning. Table I7 tabulates the
bounding boxes used to compute the maximum 10 m wind speed and minimum MSL.

We postulate that LoRA is useful when computing statistics of smooth quantities with less extreme activity
(e.g., MSL), where the loss of detail and additional smoothing is less critical; while turning LoRA off is better
for computing statistics such as wind speed, where the loss of detail can substantially affect the statistics by
suppressing the extrema. This behavior is further supported by our spectral analysis in Supplementary I.8,
where we show how LoRA affects the power spectrum of the model’s predictions at different lead times
(Figure I39).

In summary, the use of LoRA during roll-out fine-tuning provides us with a mechanism to control the
trade-off between RMSE performance and the retention of high-frequency details in long-term predictions.
This flexibility is valuable in operational settings where different types of predictions may be required for
different applications.

I.8 Power spectra
To assess the quality of predictions, a useful characteristic is the power spectrum. This section contains plots
of power spectra for predictions and targets calculated using the method described in [Lam et al., 2023].

At short wavelengths (i.e. high frequencies) Aurora’s forecasts are uniformly higher in power than those of
GraphCast, which means less blurring (Figure I37). In the mid-range of the spectrum, Aurora’s forecasts
have higher power than those of GraphCast for lead times of 1 and 2 days, but then drop in power below
GraphCast’s forecasts with 5 and 10 days lead times. In general, as more LoRA steps are added, the power
in the forecast is reduced, especially in the mid-range of the spectrum (Figure I39). For the longest lead
time of 10 days and with 40 LoRA steps, there is a clear reduction in power at the short wavelengths (i.e.
high frequencies) which results in blurring.

When comparing the spectrum of Aurora between 0.25° and 0.1°, the power of the 0.1° forecasts is generally
lower than the power of the 0.25° forecasts. However, the power of the 0.1° forecasts extends to shorter
wavelengths (i.e. higher frequencies) than 0.25° forecasts, reflecting the higher resolution of the latter. These
observations are in agreement with the discussion provided in Supplementary I.7, where we pointed out that
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the difference between Aurora forecasts with and without LoRA fine-tuning can be viewed analogously to
the difference between the forecasts produced by the IFS ensemble mean and IFS HRES.
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